Skip to main content

Advertisement

Log in

Spatial heterogeneity of benthic methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva)

  • RESEARCH ARTICLE - BASED ON MIR INVESTIGATIONS IN LAKE GENEVA
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Heterogeneous benthic methane (CH4) dynamics from river deltas with important organic matter accumulation have been recently reported in various aquatic and marine environments. The spatial heterogeneity of dissolved CH4 concentrations and associated production and diffusion rates were investigated in the Rhone River Delta of Lake Geneva (Switzerland/France) using sediment cores taken as part of the éLEMO Project. Benthic CH4 dynamics within the complex subaquatic canyon structure of the Rhone Delta were compared (1) between three canyons of different sedimentation regimes, (2) along a longitudinal transect of the ‘active’ canyon most influenced by the Rhone River, and (3) laterally across a canyon. Results indicated higher CH4 diffusion and production rates in the ‘active’ compared to the other canyons, explained by more allochthonous carbon deposition. Within the active canyon, the highest diffusion and production rates were found at intermediate sites further along the canyon. Stronger resuspension of sediments directly in front of the river inflow was likely the cause for the variable emission rates found there. Evidence also suggests more CH4 production occurs on the levees (shoulders) of canyons due to preferred sedimentation in those locations. Our results from the heterogeneous Rhone delta in Lake Geneva further support the concept that high sedimentary CH4 concentrations should be expected in depositional environments with high inputs of allochthonous organic carbon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Anselmetti FS, Bühler R, Finger D, Girardclos S, Lancini A, Rellstab C, Sturm M (2007) Effects of Alpine hydropower dams on particle transport and lacustrine sedimentation. Aquat Sci 69(2):179–198

    Article  Google Scholar 

  • Bastviken D (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18(4). doi:10.1029/2004GB002238

  • Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331(6013):50

    Article  CAS  PubMed  Google Scholar 

  • Berner RA (1982) Burial of organic carbon and pyrite sulfur in the modern ocean: its geochemical and environmental significance. Am J Sci 282(4):451–473

    Article  CAS  Google Scholar 

  • Boldrin A, Langone L, Miserocchi S, Turchetto M, Acri F (2005) Po River plume on the Adriatic continental shelf: dispersion and sedimentation of dissolved and suspended matter during different river discharge rates. Mar Geol 222–223:135–158

    Article  Google Scholar 

  • Boudreau BP, Algar C, Johnson BD, Croudace I, Reed A, Furukawa Y, Dorgan KM, Jumars PA, Grader AS, Gardiner BS (2005) Bubble growth and rise in soft sediments. Geol 33(6):517–520

    Article  Google Scholar 

  • Burkard P (1984) Hydrologie - Bilan hydrologique. In: Comm. int. protection des eaux du Léman, Lausanne: Le Léman Synthèse 1957–1982, pp 43–48

  • Burrus D, Thomas RL, Dominik J, Vernet JP (1989) Recovery and concentration of suspended solids in the upper Rhone River by continuous flow centrifugation. Hydrol Process 3:65–74

    Article  Google Scholar 

  • Bussmann I (2005) Methane release through resuspension of littoral sediment. Biogeochemistry 74(3):283–302

    Article  CAS  Google Scholar 

  • Bussmann I, Schlömer S, Schlüter M, Wessels M (2011) Active pockmarks in a large lake (Lake Constance, Germany): effects on methane distribution and turnover in the sediment. Limnol Oceangr 56(1):379–393

    Article  CAS  Google Scholar 

  • Christensen TR (2004) Thawing sub-arctic permafrost: effects on vegetation and methane emissions. Geophys Res Lett 31(4). doi:10.1029/2003GL018680

  • Cole JJ, Prairie YT, Caraco NF, McDowell WH (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:171–184

    Article  CAS  Google Scholar 

  • Corella JP, Arantegui A, Loizeau JL, DelSontro T, Dantec N, Stark N, Anselmetti FS, Girardclos S (2013) Sediment dynamics in the subaquatic channel of the Rhone delta (Lake Geneva, France/Switzerland). Aquat Sci 1–15

  • DelSontro T, Kunz MJ, Kempter T, Wüest A, Wehrli B, Senn DB (2011) Spatial heterogeneity of methane ebullition in a large tropical reservoir. Environ Sci Technol 45(23):9866–9873

    Article  CAS  PubMed  Google Scholar 

  • Finger D, Bossard P, Schmid M, Jaun L, Müller B, Steiner D, Schäffer E, Zeh M, Wüest A (2007) Effects of alpine hydropower operations on primary production in a downstream lake. Aquat Sci 69(2):240–256

    Article  Google Scholar 

  • Forster P, Ramaswamy V, Artaxo P, Bersten T, Betts R, Fahey D, Haywood J, Lean J, Lowe D, Myhre G (2007) Changes in atmospheric constituents and in radiative forcing. In: Solomon S, Qin D, Manning M, et al (eds) Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge; New York, pp 129–235

  • Furlanetto LM, Marinho CC, Palma-Silva C, Albertoni EF, Figueiredo-Barros MP, de Assis Esteves F (2012) Methane levels in shallow subtropical lake sediments: dependence on the trophic status of the lake and allochthonous input. Limnologica 42(2):151–155

    Article  CAS  Google Scholar 

  • Furrer G, Wehrli B (1996) Microbial reactions, chemical speciation, and multicomponent diffusion in porewaters of a eutrophic lake. Geochim Cosmochim Acta 60(13):2333–2346

    Article  CAS  Google Scholar 

  • Girardclos S, Hilbe M, Corella JP, Loizeau J-L, Kremer K, DelSontro T, Arantegui A, Moscariello A, Arlaud F, Akhtman Y (2012) Searching the Rhone delta channel in Lake Geneva since François-Alphonse Forel. Arch Sci 65:103–118

    Google Scholar 

  • Haubert M, Siwertz E, Chassaing B, Olive P (1975) Apports en nutrients au lac Léman pour la période 1963–1972 (II). Arch Sci 28:41–52

    CAS  Google Scholar 

  • Hofmann H, Federwisch L, Peters F (2010) Wave-induced release of methane: littoral zones as a source of methane in lakes. Lmnol Oceanogr 55(5):1990–2000

    CAS  Google Scholar 

  • Houbolt JJHC, Jonker JBM (1968) Recent sediments in the eastern part of the lake of Geneva (Lac Léman). Geol Mijnbouw 47:131–148

    Google Scholar 

  • Kankaala P, Käki T, Ojala A (2003) Quality of detritus impacts on spatial variation of methane emissions from littoral sediment of a boreal lake. Arch Hydrobiol 157(1):47–66

    Article  CAS  Google Scholar 

  • King MB (1969) Phase equilibrium in mixtures. Elsevier, New York, p 585

    Google Scholar 

  • Kremer K, Simpson G, Girardclos S (2012) Giant Lake Geneva tsunami in AD 563. Nat Geosci 5:756–757

    Article  CAS  Google Scholar 

  • Lambert A, Giovanoli F (1988) Records of riverborne turbidity currents and indications of slope failures in the Rhone delta of Lake Geneva. Limnol Oceangr 33(3):458–468

    Article  Google Scholar 

  • Loizeau JL (1991) La sédimentation récente dans le delta du Rhône, Léman: processus et évolution. Université de Genève, Switzerland, p 209

    Google Scholar 

  • Loizeau JL, Dominik J (2000) Evolution of the upper Rhone River discharge and suspended sediment load during the last 80 years and some implications for Lake Geneva. Aquat Sci 62:54–67

    Article  Google Scholar 

  • Loizeau J-L, Dominik J, Luzzi T, Vernet J-P (1997) Sediment core correlation and mapping of sediment accumulation rates in Lake Geneva (Switzerland, France) using volume magnetic susceptibility. J Great Lakes Res 23(4):391–402

    Article  CAS  Google Scholar 

  • Loizeau JL, Girardclos S, Dominik J (2012) Taux d’accumulation de sédiments récents et bilan de la matière particulaire dans le Léman. Arch Sci 65:81–92

    CAS  Google Scholar 

  • Maerki M, Wehrli B, Dinkel C, Müller B (2004) The influence of tortuosity on molecular diffusion in freshwater sediments of high porosity. Geochim Cosmochim Acta 68(7):1519–1528

    Article  CAS  Google Scholar 

  • Martens CS, Berner RA (1974) Methane production in the interstitial waters of sulfate-depleted marine sediments. Science 185(4157):1167–1169

    Article  CAS  PubMed  Google Scholar 

  • McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A (2006) Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J Geophys Res 111:C09007. doi:10.1029/2005JC003183

    Google Scholar 

  • Meyers P, Ishiwatari R (1993) Lacustrine organic geochemistryman overview of indicators of organic matter sources and diagenesis in lake sediments. Org Geochem 20(7):867–900

    Article  CAS  Google Scholar 

  • Michalski J, Lemmin U (1995) Dynamics of vertical mixing in the hypolimnion of a deep lake: lake Geneva. Limnol Oceangr 40(4):809–816

    Article  Google Scholar 

  • Monna F, Dominik J, Loizeau J-L, Pardos M, Arpagaus P (1999) Origin and evolution of Pb in sediments of Lake Geneva (Switzerland–France). Establishing a stable Pb record. Environ Sci Technol 33(17):2850–2857

    Article  CAS  Google Scholar 

  • Murase J, Sakai Y, Kametani A, Sugimoto A (2005) Dynamics of methane in mesotrophic Lake Biwa. Japan. Ecol Res 20(3):377–385

    Article  CAS  Google Scholar 

  • Ostrovsky I, McGinnis DF, Lapidus L, Eckert W (2008) Quantifying gas ebullition with echo sounder: the role of methane transport by bubbles in a medium-sized lake. Limnol Oceangr Methods 6:105–118

    Article  CAS  Google Scholar 

  • Reay D (2010) Methane and climate change. Earthscan Publications Ltd., London, p 270

    Google Scholar 

  • Sastre V, Loizeau J-L, Greinert J, Naudts L, Arpagaus P, Anselmetti F, Wildi W (2010) Morphology and recent history of the Rhone River Delta in Lake Geneva (Switzerland). Swiss J Geosci 103(1):33–42

    Article  Google Scholar 

  • Schmid M, Tietze K, Halbwachs M, Lorke A, McGinnis DF, Wüest A (2003) How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assessment in light of the Nyiragongo Volcano eruption in 2002. Acta Vulcanol 15:115–122

    Google Scholar 

  • Schulz S, Conrad R (1995) Effect of algal deposition on acetate and methane concentrations in the profundal sediment of a deep lake (Lake Constance). FEMS Microbiol Ecol 16(4):251–260

    Article  CAS  Google Scholar 

  • Segers R (1998) Methane production and methane consumption: a review of processes underlying wetland methane fluxes. Biogeochemistry 41(1):23–51

    Article  CAS  Google Scholar 

  • Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B (2009) Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnol Oceangr 54(6):2243–2254

    Article  Google Scholar 

  • Thevenon F, Wirth S, Fujak M, Poté J, Girardclos S (2013) Human impact on the transport of terrigeneous and anthropogenic elements to peri-alpine lakes (Switzerland) over the last decades. Aquat Sci 75:413–424

    Article  CAS  Google Scholar 

  • Wessels M, Bussmann I, Schloemer S, Schlüter M, Boeder V (2010) Distribution, morphology, and formation of pockmarks in Lake Constance, Germany. Limnol Oceangr 55(6):2623–2633

    CAS  Google Scholar 

Download references

Acknowledgments

This publication is part of the international, interdisciplinary research project éLEMO (http://www.elemo.ch) to investigate the deep-waters of Lake Geneva using two Russian MIR submarines. Funding for this study was provided by the “Fondation pour l’Etude des Eaux du Léman” (FEEL; in particular by the Ferring Pharmaceuticals St Prex). Additional funding for the work described in this paper was provided by Eawag. We are grateful for the support. We thank the Russian MIR crew members (www.elemo.ch/mir-team) for their excellent performance and the SAGRAVE team who provided and operated the platform from which the dives were carried out. We also thank Ulrich Lemmin and Jean-Denis Bourquin for project coordination and Flavio Anselmetti for the dives in the Rhone Delta area. The service of Mikhail Kranoperov (Russian Honorary Consulate) as liaison is greatly appreciated. We also thank A. Arantegui, C. Dinkel, K. Ross, M. Schurter, S. Wirth, and A. Zwyssig for fieldwork assistance. Thanks to G. Nobbe, A. Reusch and R. Stierli for lab assistance, and A. Brand for help with production rates. We also thank D. McGinnis and three anonymous reviewers for comments that helped to substantially improve this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Sollberger.

Additional information

This article is part of the special issue "e´LEMO – investigations using MIR submersibles in Lake Geneva".

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM1 (PDF 1227 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sollberger, S., Corella, J.P., Girardclos, S. et al. Spatial heterogeneity of benthic methane dynamics in the subaquatic canyons of the Rhone River Delta (Lake Geneva). Aquat Sci 76 (Suppl 1), 89–101 (2014). https://doi.org/10.1007/s00027-013-0319-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-013-0319-2

Keywords

Navigation