Skip to main content

Advertisement

Log in

Predicting dissolved oxygen in the Chesapeake Bay: applications and implications

  • Research Article
  • Published:
Aquatic Sciences Aims and scope Submit manuscript

Abstract

Eutrophic depletion of dissolved oxygen (DO) and its consequences for ecosystem dynamics have been a central theme of research, assessment and management policies for several decades in the Chesapeake Bay. Ongoing forecast efforts predict the extent of the summer hypoxic/anoxic area due to nutrient loads from the watershed. However, these models neither predict DO levels nor address the intricate interactions among various ecological processes. The prediction of spatially explicit DO levels in the Chesapeake Bay can eventually lead to a reliable depiction of the comprehensive ecological structure and functioning, and can also allow the quantification of the role of nutrient reduction strategies in water quality management. In this paper, we describe a three dimensional empirical model to predict DO levels in the Chesapeake Bay as a function of water temperature, salinity and dissolved nutrient concentrations (TDN and TDP). The residual analysis shows that predicted DO values compare well with observations. Nash–Sutcliffe efficiency (NSE) and root mean square error-observations standard deviation ratio (RSR) are used to evaluate the performance of the empirical model; the scores demonstrate the usability of model predictions (NSE, surface layer = 0.82–0.86; middle layer = 0.65–0.82; bottom layer = 0.70–0.82; RSR surface layer = 0.37–0.44; middle layer = 0.43–0.58 and bottom layer = 0.43–0.54). The predicted DO values and other physical outputs from downscaling of regional weather and climate predictions, or forecasts from hydrodynamic models, can be used to forecast various ecological components. Such forecasts would be useful for both recreational and commercial users of the Chesapeake Bay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alexander RB, Smith RA, Schwarz GE (2000) Effect of stream channel size on the delivery of nitrogen into the Gulf of Mexico. Nature 403:758–761

    Article  PubMed  CAS  Google Scholar 

  • Anderson CA, Sapiano MRP, Prasad MBK et al. (2010) Predicting potentially toxic Pseudo-nitzschia blooms the Chesapeake Bay. J Mar Sys doi:10.1016/j.jmarsys.2010.04.003

  • Baird D (2009) An assessment of the functional variability of selected coastal ecosystems in the context of local environmental changes. ICES J Mar Sci 66:1520–1527

    Article  Google Scholar 

  • Barile PJ (2004) Evidence of anthropogenic nitrogen enrichment of the littoral waters of east central Florida. J Coast Res 20(4):1237–1245

    Article  Google Scholar 

  • Batiuk RA, Breitburg DL, Diaz RJ, Cronin TM, Secor DH, Thursby G (2009) Derivation of habitat-specific dissolved oxygen criteria for Chesapeake Bay and its tidal tributaries. J Exp Mar Biol Ecol 381(1):S204–S215

    Article  CAS  Google Scholar 

  • Bishop MJ, Powers SP, Porter HJ, Peterson CH (2006) Benthic biological effects of seasonal hypoxia in a eutrophic estuary predate rapid coastal development. Estuar Coast Shelf Sci 70:415–422

    Article  Google Scholar 

  • Blauw AN, Anderson P, Estrada M et al (2006) The use of fuzzy logic models for data analysis and modeling of European harmful algal blooms: results of the HABES project. African J Mar Sci 28(2):365–369

    Article  Google Scholar 

  • Boesch DF, Brinsfield RB (2000) Coastal eutrophication and agriculture: contributions and solutions. In: Balazs EE, Galante JM, Lynch JS et al (eds) Biological resource management: connecting science and policy. Springer, Berlin, pp 93–115

    Google Scholar 

  • Boesch DF, Coles VJ, Kimmel DG, Miller WD (2007) Coastal dead zones and global climate change: ramifications of climate change for Chesapeake Bay hypoxia. In: Regional impacts of climate change: four case studies in the United States. Pen Center for Global Climate Change, Arlington, Virginia, pp 54–70

  • Borsuk ME, Higdon D, Stow CA, Reckhow KH (2001) A Bayesian hierarchical model to predict benthic oxygen demand from organic matter loading in estuaries and coastal zones. Ecol Model 143:165–181

    Article  CAS  Google Scholar 

  • Boynton WR, Kemp WM (2000) Influence of river flow and nutrient loads on selected ecosystem responses: a synthesis of Chesapeake Bay data. In: Hobbie JE (ed) Estuarine science: a synthetic approach to research and practice. Island Press, Washington, DC, pp 269–298

    Google Scholar 

  • Brandt SB, Gerken M, Hartman KJ, Demers E (2009) Effects of hypoxia on food consumption and growth of juvenile striped bass (Morone saxatilis). J Exp Mar Biol Ecol 381:S143–S149

    Article  Google Scholar 

  • Breitburg DL, Pihl L, Kolesar SE (2001) Effects of low dissolved oxygen on the behavior ecology and harvest of fishes: a comparison of the Chesapeake Bay and Baltic-Kattegat systems. In: Rabalais NN, Turner RE (eds) Coastal hypoxia: consequences for living resources and ecosystems. American Geophysical Union, Washington, DC, pp 241–268

    Google Scholar 

  • Breitburg DL, Hondorp DW, Davias LA, Diaz RJ (2009) Hypoxia, nitrogen and fisheries: integrating effects across local and global landscapes. Annl Rev Mar Sci 1:329–349

    Article  Google Scholar 

  • Buzzelli CP, Luettich RA et al (2002) Estimating the spatial extent of bottom-water hypoxia and habitat degradation in a shallow estuary. Mar Ecol Prog Ser 230:103–112

    Article  Google Scholar 

  • Caraco NF, Cole JJ, Likens GE (1989) Evidence for sulfate controlled phosphorus release from sediments of aquatic systems. Nature 341:316–318

    Article  CAS  Google Scholar 

  • Cerco CF (1995) Simulation of long-term trends in Chesapeake Bay eutrophication. J Environ Eng 121:298–310

    Article  CAS  Google Scholar 

  • Cerco CF, Cole TM (1993) Three-dimensional eutrophication model of the Chesapeake Bay. J Environ Eng 119:1006–1025

    Article  CAS  Google Scholar 

  • Chai C, Yu Z, Song X, Cao X (2006) The status and characteristics of eutrophication in the Yangtze River (Changjiang) estuary and the adjacent East China Sea, China. Hydrobiologia 563:313–328

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change) (2007) Climate change 2007. Synthesis Report. A contribution of Working Group I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK

  • Constantin de Magny G, Long W, Brown CW et al. (2010). Predicting the distribution of Vibrio spp. in the Chesapeake Bay: a case study with Vibrio cholerae case study. Ecohealth doi:10.1007/s10393-009-0273-6

  • Costantini M, Ludsin SA, Mason DM et al (2008) Effect of hypoxia on habitat quality of striped bass (Motone saxatilis) in Chesapeake Bay. Can J Fish Aqu Sci 65:969–1002

    Article  Google Scholar 

  • Cowan JLW, Boynton WR (1996) Sediment-water oxygen and nutrient exchanges along the longitudinal axis of Chesapeake Bay: seasonal patterns, controlling factors and ecological significance. Estuaries 19(3):562–580

    Article  CAS  Google Scholar 

  • Cronin TM, Dwyer GS, Kamiya T et al (2003) Medieval warm period, little ice age and 20th century temperature variability from Chesapeake Bay. Global Planet Chag 36:17–29

    Article  Google Scholar 

  • Cullen JJ, Doolittle WF, Levin SA et al (2007) Patterns and prediction in microbial oceanography. Oceanography 20:34–46

    Google Scholar 

  • D’Avanzo C, Kremer JN (1994) Diel oxygen dynamics and anoxic eutrophic estuary of Waquoit Bay, Massachusetts. Estuaries 17(1B):131–139

    Article  Google Scholar 

  • Decker MB, Brown CW, Hood RR et al (2007) Predicting the distribution of the scyphomedusa Chrysaora quinquecirrha in Chesapeake Bay. Mar Ecol Prog Ser 329:99–113

    Article  Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–928

    Article  PubMed  CAS  Google Scholar 

  • Draper NR, Smith H (1998) Applied regression analysis. Wiley-Interscience, Hoboken

    Google Scholar 

  • Fennel K, Wilkin J, Levin J et al. (2006) Nitrogen cycling in the mid Atlantic Bight and implications for the North Atlantic nitrogen budget: results from a three-dimensional model. Glob Biogeochem Cyc 20:GB3007, doi:10.1029/2005GB002456

  • Froelich PN, Bender ML, Luedtke NA (1982) The marine phosphorus cycle. Ame J Sci 282:474–511

    Article  CAS  Google Scholar 

  • Goodrich E, Boicourt W, Hamilton P, Pritchard D (1987) Wind-induced destratification in Chesapeake Bay. J Phy Oceanogr 17:2232–2240

    Article  Google Scholar 

  • Greene RM, Lehrter JC, Hagy JD III (2009) Multiple regression models for hindcasting and forecasting midsummer hypoxia in the Gulf of Mexico. Ecol Appl 19(5):1161–1175

    Article  PubMed  Google Scholar 

  • Gudasz C, Bastviken D, Steger K et al (2010) Temperature-controlled organic carbon mineralization in lake sediments. Nature 466:478–481

    Article  PubMed  CAS  Google Scholar 

  • Hagy JD, Boynton WR, Keefe CW, Wood KV (2004) Hypoxia in Chesapeake Bay, 1950–2001: long term change in relation to nutrient loading and river flow. Estuaries 27(4):634–658

    Article  CAS  Google Scholar 

  • Henrichs SM (1992) Early diagenesis of organic matter in marine sediments: progress and perplexity. Mar Chem 39:119–149

    Article  CAS  Google Scholar 

  • Hilton TW, Najjar RG, Zhong L, Li M (2008) Is there a signal of sea-level rise in Chesapeake Bay salinity? J Geophy Res 113:C09002. doi:10.1029/2007JC004247

    Article  Google Scholar 

  • Howarth RW, Billen G, Swaney D et al (1996) Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: natural and human influences. Biogeochemistry 35:75–139

    Article  CAS  Google Scholar 

  • Howarth RW, Swaney DP, Boyer EW et al (2006) The influence of climate on average nitrogen export from large watersheds in the Northeastern United States. Biogeochemistry 79:163–186

    Article  CAS  Google Scholar 

  • Jonas R (1997) Bacteria, dissolved organics and oxygen consumption in salinity stratified Chesapeake Bay, an anoxia paradigm. Amer Zool 37:612–620

    CAS  Google Scholar 

  • Justić D, Rabalais NN, Turner RE (2005) Coupling between climate variability and coastal eutrophication: evidence and outlook for the northern Gulf of Mexico. J Sea Res 54:25–35

    Article  Google Scholar 

  • Karlsen AW, Kerhin R, Holmes CW (2000) Historical trends in Chesapeake Bay dissolved oxygen based on benthic foraminifera from sediment cores. Estuaries 23(4):488–508

    Article  Google Scholar 

  • Kaushal SS, Groffman PM, Band LE et al (2008) Interaction between urbanization and climate variability amplifies watershed nitrate export in Maryland. Environ Sci Tech 42(16):5872–5878

    Article  CAS  Google Scholar 

  • Kaushal SS, Likens GE, Jaworski NA et al. (2010) Rising stream and river temperatures in the United States. Front Ecol Environ, doi:10.1890/090037

  • Keister JE, Houde ED, Breitburg DL (2000) Effects of bottom layer hypoxia on abundances and depth distributions of organisms in Patuxent River, Chesapeake Bay. Mar Ecol Prog Ser 205:43–59

    Article  Google Scholar 

  • Kemp WM, Sampou PA, Caffrey JM et al (1990) Ammonium recycling versus denitrification in Chesapeake Bay sediments. Limnol Oceanogr 35:1545–1563

    Article  CAS  Google Scholar 

  • Kemp WM, Sampou PA, Garber J et al (1992) Seasonal depletion of oxygen from bottom waters of Chesapeake Bay: roles of benthic and planktonic respiration and physical exchange processes. Mar Ecol Prog Ser 85:137–152

    Article  CAS  Google Scholar 

  • Kemp WM, Boynton WR, Adolf JE et al (2005) Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Mar Ecol Prog Ser 303:1–29

    Article  Google Scholar 

  • Kemp WM, Testa JM, Conley DJ et al (2009) Temporal responses of coastal hypoxia to nutrient loading and physical controls. Biogeosciences 6:2985–3008

    Article  CAS  Google Scholar 

  • Krug EC, Marrifield K (2007) Marine modification of terrestrial influences on Gulf hypoxia: part II. Hydrol Earth Sys Sci 11:191–209

    Article  Google Scholar 

  • Li WKW, Harrison WG (2008) Propagation of an atmospheric climate signal to phytoplankton in a small marine basin. Limnol Oceanogr 53(5):1734–1745

    Article  Google Scholar 

  • Lotze HK, Lenihan HS, Bourque BJ et al (2006) Depletion, degradation, and recovery potential of estuaries and coastal seas. Science 312:1806–1809

    Article  PubMed  CAS  Google Scholar 

  • Ludsin SA, Zhang X, Brandt SB et al (2009) Hypoxia-avoidance by planktivorous fish in Chesapeake Bay: implications for food web interactions and fish management. J Exp Mar Biol Ecol 381:S121–S131

    Article  Google Scholar 

  • Malone TC, Crocker LH, Pike SW, Wendler SW (1988) Influences of river flow on the dynamics of phytoplankton production in a partially stratified estuary. Mar Ecol Prog Ser 48:235–249

    Article  Google Scholar 

  • Mee LD (1988) A definition of “critical eutrophication” in the marine environment. Rev Biol Trop 36:159–161

    Google Scholar 

  • Mellergaard S, Nielsen E (1997) Epidemiology of lymphocystis, epidermal papilloma and skin ulcers in common dab Limanda limanda along the west coast of Denmark. Dis Aqua Organ 30:151–163

    Article  Google Scholar 

  • Meng H, Sexton A, Maddox MC, Sood A, Brown CW, Ferraro RR, Murtugudde R (2010) Modeling Rappahannock River Basin using SWAT-Pilot Chesapeake Bay Watershed. Appl Eng Agricul 26(5):795–805

    Google Scholar 

  • Montagna PA, Froeschke J (2009) Long-term biological effects of coastal hypoxia in Corpus Christi Bay, Texas, USA. J Exp Mar Biol Ecol 381:S21–S30

    Article  Google Scholar 

  • Moriasi DN, Arnold JG, Van Liew MW et al (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900

    Google Scholar 

  • Motovilov YG, Gottschalk L, Engeland K, Rodhe A (1999) Validation of a distributed hydrological model against spatial observations. Agr Forest Meteorol 98(99):257–277

    Article  Google Scholar 

  • Murtugudde R (2009) Regional earth system prediction: a decision making tool for sustainability? Curr Op Environ Sustain 1:37–45

    Article  Google Scholar 

  • Murtugudde R (2010) Observational Needs for Sustainable Coastal Prediction and Management. In: Ramanathan AL, Bhattacharya P, Dittmar, T (eds) Management and sustainable development of coastal zone environments, Springer, Berlin pp. 3–18

  • Najjar RG, Walker HA, Anderson PJ et al (2000) The potential impacts of climate change on the mid-Atlantic coastal region. Clim Res 14:219–233

    Article  Google Scholar 

  • Najjar RG, Pyke CR, Adams MB et al (2010) Potential climate-change impacts on the Chesapeake Bay. Estuar Coast Shelf Sci 86:1–20

    Article  CAS  Google Scholar 

  • Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models: Part 1. A discussion of principles. J Hydrol 10(3):282–290

    Article  Google Scholar 

  • Newcombe CL, Horn WA (1938) Oxygen poor waters of the Chesapeake Bay. Science 88:80–81

    Article  PubMed  CAS  Google Scholar 

  • Nezlin NP, Kamer K, Hyde J, Stein ED (2009) Dissolved oxygen dynamics in a eutrophic estuary, Upper Newport Bay, California. Estuar Coast Shelf Sci 82:139–151

    Article  CAS  Google Scholar 

  • Officer CB, Biggs RB, Taft JL et al (1984) Chesapeake Bay anoxia: origin, development and significance. Science 223:22–27

    Article  PubMed  CAS  Google Scholar 

  • Pellerin BA, Kaushal SS, McDowell WH (2006) Does anthropogenic nitrogen enrichment increase organic nitrogen concentrations in runoff from forested and human-dominated watersheds? Ecosystems 9(5):852–864

    Article  CAS  Google Scholar 

  • Prasad MBK, Sapiano MRP, Anderson CR et al (2010) Long-term variability of nutrients and chlorophyll in the Chesapeake Bay: a retrospective analysis, 1985–2008. Estuar Coast 33:1128–1143

    Article  CAS  Google Scholar 

  • Preston BL (2004) Observed winter warming of the Chesapeake Bay estuary (1949–2002): implications for ecosystem management. Environ Manage 34:125–139

    Article  PubMed  Google Scholar 

  • Rabalais NN, Gilbert D (2009) Distribution and consequences of hypoxia. In: Urban E, Sundby B, Malanotte-Rizzoli P, Melillo JM (eds) Watersheds, bays and bounded seas. Island Press, Washington, DC, pp 209–226

    Google Scholar 

  • Ripley JL, Foran CM (2007) Influence of estuarine hypoxia on feeding and sound production by two sympatric pipefish species (Syngnathidae). Mar Environ Res 63:350–367

    Article  PubMed  CAS  Google Scholar 

  • Rombough PJ, Randall DJ (1988) Respiratory gas exchange, aerobic metabolism, and effects of hypoxia during early life. In: Hoar WS (ed) Fish physiology. Academic Press, New York, pp 59–161

    Google Scholar 

  • Scavia D, Kelly ELA, Hagy JD III (2006) A simple model for forecasting the effects of nitrogen loads on Chesapeake Bay hypoxia. Estuar Coast 29(4):674–684

    CAS  Google Scholar 

  • Schubel JR, Pritchard DW (1986) Responses of upper Chesapeake Bay to variation in discharge of the Susquehanna River. Estuaries 9:236–249

    Article  CAS  Google Scholar 

  • Seliger HH, Boggs JA (1988) Long term patterns of anoxia in the Chesapeake Bay. In: Lynch M, Krome EC (eds) Understanding the estuary: advances in Chesapeake Bay research; Publ. No. 129. Chesapeake Research Consortium, Solomons, pp 570–583

    Google Scholar 

  • Singh J, Knapp HV, Demissie M (2004) Hydrologic modeling of the Iroquois River watershed using HSPF and SWAT. ISWS CR 2004–08. Champaign, Ill: Illinois State Water Survey

  • Stanley DW, Nixon SW (1992) Stratification and bottom water hypoxia in the Pamlico River Estuary. Estuaries 15:270–281

    Article  CAS  Google Scholar 

  • Steyaert M, Moodley L, Nadong T et al (2007) Responses of intertidal nematodes to short-term anoxic events. J Exp Mar Biol Ecol 345:175–184

    Article  CAS  Google Scholar 

  • Stow CA, Scavia D (2009) Modeling hypoxia in the Chesapeake Bay: ensemble estimation using a Bayesian hierarchical model. J Mar Sys 76:244–250

    Article  Google Scholar 

  • Tuttle JH, Jonas RB, Malone TC (1987) Origin, development and significance of Chesapeake Bay anoxia. In: Majumdar SE, Hall LW Jr, Austin KM (eds) Contaminant problems and management of living Chesapeake Bay resources. Pennsylvania Academy of Science, Philadelphia, pp 442–472

    Google Scholar 

  • Valiela I, Foreman K, LaMontagne M et al (1992) Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuar Coast 15(4):443–457

    Article  CAS  Google Scholar 

  • Vanquer-Sunyer R, Duarte CM (2008) Thresholds of hypoxia for marine biodiversity. Environ Sci Tech 105:15452–15457

    Google Scholar 

  • Vogelbein WK, Zwerner DE, Kator H et al. (1999) Epizootic mycobacteriosis in Chesapeake Bay striped bass. Proceedings 24th Annual East Fish Health Workshop: 8–11, Atl. Beach, NC

  • Wu RSS, Zhou BS, Randall DJ et al (2003) Aquatic hypoxia is an endocrine disruptor and impairs fish reproduction. Environ Sci Tech 37:1137–1141

    Article  CAS  Google Scholar 

  • Xu J, Hood RR (2006) Modeling biogeochemical cycles in Chesapeake Bay with a couple physical–biological model. Estuar Coast Shelf Sci 69:19–46

    Article  Google Scholar 

  • Zhang X, Roman M, Kimmel D et al. (2006) Spatial variability in plankton biomass and hydrographic variables along an axial transect in Chesapeake Bay. J Geophy Res 111, C05S11, doi:10.1029/2005JC003085

  • Zimmerman AR, Canuel EA (2000) A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter. Mar Chem 69:117–137

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We greatly acknowledge NOAA for supporting this work. The study that we present could not have been possible without the help of people from DNR and other PIs who have gathered the data over the years, which is entirely responsible for any value this research may hold. RM is also grateful to the Divecha Center for Climate Change and CAOS at IISc, Bangalore for their generous support and hospitality. We acknowledge Dr. Sujay Kaushal and anonymous reviewers for their valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bala Krishna Prasad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasad, M.B.K., Long, W., Zhang, X. et al. Predicting dissolved oxygen in the Chesapeake Bay: applications and implications. Aquat Sci 73, 437–451 (2011). https://doi.org/10.1007/s00027-011-0191-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00027-011-0191-x

Keywords

Navigation