Skip to main content
Log in

Affine and Projective Tree Metric Theorems

  • Published:
Annals of Combinatorics Aims and scope Submit manuscript

Abstract

The tree metric theorem provides a combinatorial four-point condition that characterizes dissimilarity maps derived from pairwise compatible split systems. A related weaker four point condition characterizes dissimilarity maps derived from circular split systems known as Kalmanson metrics. The tree metric theorem was first discovered in the context of phylogenetics and forms the basis of many tree reconstruction algorithms, whereas Kalmanson metrics were first considered by computer scientists, and are notable in that they are a non-trivial class of metrics for which the traveling salesman problem is tractable. We present a unifying framework for these theorems based on combinatorial structures that are used for graph planarity testing. These are (projective) PC-trees, and their affine analogs, PQ-trees. In the projective case, we generalize a number of concepts from clustering theory, including hierarchies, pyramids, ultrametrics, and Robinsonian matrices, and the theorems that relate them. As with tree metrics and ultrametrics, the link between PC-trees and PQ-trees is established via the Gromov product.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertrand P., Janowitz M.F.: Pyramids and weak hierarchies in the ordinal model for clustering. Discrete Appl. Math. 122(1-3), 55–81 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Booth K., Lueker G.: Testing for the consecutive ones property, interval graphs, and graph planarity using PQ-tree algorithms. J. Comput. System Sci. 13(3), 335–379 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bryant D., Moulton V.: Neighbor-Net: an agglomerative method for the construction of phylogenetic networks. Mol. Biol. Evol. 21(2), 255–265 (2004)

    Article  Google Scholar 

  4. Bryant, D., Moulton, V., Spillner, A.: Consistency of the neighbor-net algorithm. Algorithms Mol. Bio. 2, #8 (2007)

  5. Buneman, P.: The recovery of trees from measures of dissimilarity. In: Hodson, F.R., Kendall, D.G., Tǎutu, P. (eds.)Mathematics in the Archaeological and Historical Sciences, pp. 387–395. Edinburgh University Press, Edinburgh (1971)

  6. Chepoi V., Fichet B.: A note on circular decomposable metrics. Geom. Dedicata 69(3), 237–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Christopher, G., Farach, M., Trick, M.: The structure of circular decomposable metrics. In: Diaz, J., Serna, M. (eds.) Algorithms—ESA’96, pp. 486–500. Springer, Berlin (1996)

  8. Dewey, C., Pachter, L.: Evolution at the nucleotide level: the problem of multiple whole genome alignment. Hum. Mol. Genet. 15(suppl 1), R51–R56 (2006)

    Google Scholar 

  9. Diday, E.: Orders and overlapping clusters by pyramids. In: De Leeuw, J., Heiser, W.J., Meulman, J.J., Critchley, F. (eds.) Multidimensional Data Analysis, pp. 201–234. DSWO Press, Leiden (1986)

  10. Dress, A.: Towards a theory of holistic clustering. In: Mirkin, B. et al. (eds.)Mathematical Hierarchies and Biology, pp. 271-289. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 37. American Mathematical Society, Providence, RI (1997)

  11. Dress A, Huber K.T., Moulton V.: Some uses of the Farris transform in mathematics and phylogenetics—a review. Ann. Combin. 11(1), 1–37 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Edmonds, J., Giles, R.: A min-max relation for submodular functions on graphs. In: Hammer, P.L. (eds.) Studies in Integer Programming, pp. 185–204. North-Holland, Amsterdam (1977)

  13. Eslahchi, C., Habibi, M., Hassanzadeh, R., Mottaghi, E.: MC-Net: a method for the construction of phylogenetic networks based on the Monte-Carlo method. BMC Evol. Biol. 10, #254 (2010)

  14. Fakcharoenphol, J., Rao, S., Talwar, K.: A tight bound on approximating arbitrary metrics by tree metrics. In: Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pp. 448–455. ACM Press, New York (2003)

  15. Farris J.S.: Estimating phylogenetic trees from distance matrices. Amer. Naturalist 106(951), 645–668 (1972)

    Article  Google Scholar 

  16. Gusfield D.: Efficient algorithms for inferring evolutionary history. Networks 21(1), 19–28 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hsu, W.-L.: PC-trees vs. PQ-trees. In: Wang, J. (ed.) Computing and Combinatorics, pp. 207–217. Springer, Berlin (2001)

  18. Hsu W.-L., McConnell R.M.: PC trees and circular-ones arrangements. Theoret. Comput. Sci. 296(1), 99–116 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Huson D., Bryant D.: Application of phylogenetic networks in evolutionary studies.Mol. Biol. Evol. 23(2), 254–267 (2006)

    Google Scholar 

  20. Jardine C.J., Jardine N., Sibson R.: The structure and construction of taxonomic hierarchies. Math. Biosci. 1(2), 173–179 (1967)

    Article  MATH  Google Scholar 

  21. Kalmanson K.: Edgeconvex circuits and the traveling salesman problem. Canad. J. Math. 27(5), 1000–1010 (1975)

    Article  MathSciNet  Google Scholar 

  22. Levy D., Pachter L.: The neighbor-net algorithm. Adv. Appl. Math. 47(2), 240–258 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Pachter, L., Sturmfels, B. (eds.): Algebraic Statistics for Computational Biology. Cambridge University Press, New York (2005)

  24. Robinson W.S.: A method for chronologically ordering archaeological deposits. Amer. Antiquity 16, 293–301 (1951)

    Article  Google Scholar 

  25. Semple C., Steel M.: Phylogenetics. Oxford University Press, Oxford (2003)

    MATH  Google Scholar 

  26. Semple C., Steel M.: Cyclic permutations and evolutionary trees. Adv. Appl. Math. 32(4), 669–680 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  27. Shih W.-K., Hsu W.-L.: A new planarity test. Theoret. Comput. Sci. 223(1-2), 179–191 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  28. Terhorst, J.: The Kalmanson complex. arXiv.org:abs/1102.3177 (2011)

  29. White W.T. et al.: Treeness triangles: visualizing the loss of phylogenetic signal. Mol. Biol. Evol. 24(9), 2029–2039 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lior Pachter.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kleinman, A., Harel, M. & Pachter, L. Affine and Projective Tree Metric Theorems. Ann. Comb. 17, 205–228 (2013). https://doi.org/10.1007/s00026-012-0173-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00026-012-0173-2

Keywords

Mathematics Subject Classification

Navigation