Skip to main content
Log in

Functional Equation Characterizing Polynomial Functions and an Algorithm

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In the present paper we solve the generalized form of the functional equation considered in Fechner and Gselmann (Publ Math Debr 80(1–2):143–154, 2012), that is we find general solutions of the following functional equation.

$$\begin{aligned} F(x + y) - F(x) - F(y) = \sum \limits _{i=1}^m (a_i x + b_i y)f(\alpha _i x + \beta _i y) \end{aligned}$$
(0.1)

for all \(x,y,a_i,b_i \in \mathbb {R}\) and \(\alpha _i,\beta _i \in \mathbb {Q}.\) Thus we continue investigations presented in Nadhomi et al. (Aequationes Math, 95:1095–1117, 2021) where we generalized the left hand side of Fechner–Gselmann equation. It turns out that under some mild assumption, the pair (Ff) solving (0.1) happens to be a pair of polynomial functions, and in some important cases just the usual polynomials (despite the fact that we assume no regularity of solutions a priori). In the second part of the present paper we formulate an algorithm written in the computer algebra system Maple which determines the polynomial solutions of the functional equations belonging to the class (0.1) (cf. also Borus and Gilányi in 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), pp 559–562, 2013; Aequationes Math 94(4):723–736, 2020; Gilányi in Math Pannon 9(1):55–70, 1998).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

We agree that our article be available, all data are available.

References

  1. Aczél, J.: A mean value property of the derivative of quadratic polynomials—without mean values and derivatives. Math. Mag. 58, 42–45 (1985)

    MathSciNet  MATH  Google Scholar 

  2. Aczél, J., Kuczma, M.: On two mean value properties and functional equations associated with them. Aequationes Math. 38, 216–235 (1989)

    Article  MathSciNet  Google Scholar 

  3. Almira, J., Shulman, E.: On polynomial functions on non-commutative groups. J. Math. Anal. Appl. 458(1), 875–888 (2018)

    Article  MathSciNet  Google Scholar 

  4. Borus, G.G., Gilányi, A.: Solving systems of linear functional equations with computer. In: 2013 IEEE 4th International Conference on Cognitive Infocommunications (CogInfoCom), pp. 559–562 (2013)

  5. Borus, G.G., Gilányi, A.: Computer assisted solution of systems of two variable linear functional equations. Aequationes Math. 94(4), 723–736 (2020)

    Article  MathSciNet  Google Scholar 

  6. Fechner, W., Gselmann, E.: General and alien solutions of a functional equation and of a functional inequality. Publ. Math. Debr. 80(1–2), 143–154 (2012)

    Article  MathSciNet  Google Scholar 

  7. Fréchet, M.: Une définition fonctionelle des polynômes. Nouv. Ann. 49, 145–162 (1909)

    Google Scholar 

  8. Gilányi, A.: Solving linear functional equations with computer (English summary). Math. Pannon. 9(1), 55–70 (1998)

    Google Scholar 

  9. Kuczma, M.: An introduction to the theory of functional equations and inequalities. In: Gilányi, A. (ed.) Cauchy Equation and Jensen’s Inequality, 2nd edn. Birkhauser, Basel (2009)

    MATH  Google Scholar 

  10. Lisak, A., Sablik, M.: Trapezoidal rule revisited. Bull. Inst. Math. Acad. Sin. 6, 347–360 (2011)

    MathSciNet  MATH  Google Scholar 

  11. Mazur, S., Orlicz, W.: Grundlegende Eigenschaften der polynomischen Operationen. Studia Math. 5(50–68), 179–189 (1934)

    Article  Google Scholar 

  12. Nadhomi, T., Okeke, C.P., Sablik, M., Szostok, T.: On a new class of functional equations satisfied by polynomial functions. Aequationes Math. (2021). https://doi.org/10.1007/s00010-021-00781-2

    Article  MathSciNet  MATH  Google Scholar 

  13. Pawlikowska, I.: A characterization of polynomials through Flett’s MVT. Publ. Math. Debr. 60, 1–14 (2002)

    MathSciNet  MATH  Google Scholar 

  14. Riedel, T., Sablik, M.: Characterizing polynomial functions by a mean value property. Publ. Math. Debr. 52, 597–610 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Sablik, M.: Taylor’s theorem and functional equations. Aequationes Math. 60, 258–267 (2000)

    Article  MathSciNet  Google Scholar 

  16. Sablik, M.: Characterizing polynomial functions, in: Report of Meeting, The Seventeenth Katowice-Debrecen Winter Seminar, Zakopane (Poland), February 1-4, 2017. Ann. Math. Silesianae, 31, 198–199 (2017)

  17. Sablik, M.: An elementary method of solving functional equations. Ann. Univ. Sci. Bp. Sect. Comp. 48, 181–188 (2018)

    MathSciNet  MATH  Google Scholar 

  18. Shulman, E.: Each semipolynomial on a group is a polynomial. J. Math. Anal. Appl. 479(1), 765–772 (2019)

    Article  MathSciNet  Google Scholar 

  19. Székelyhidi, L.: Convolution Type Functional Equations on Topological Commutative Groups. World Scientific Publishing Co. Inc., Teaneck (1991)

    Book  Google Scholar 

  20. Szostok, T.: Functional equations stemming from numerical analysis. Dissertationes Math. (Rozprawy Mat.), 508, 57 (2015)

  21. Van der Lijn, G.: La définition fonctionnelle des polynômes dans les groupes abéliens. Fund. Math. 33, 42–50 (1939)

    Article  MathSciNet  Google Scholar 

  22. Wilson, W.H.: On a certain general class of functional equations. Am. J. Math. 40, 263–282 (1918)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

1. We are also grateful to Dr. Attila Gilányi, who provided expertise that greatly assisted us during this research in particular, in the area that involves computer algorithms. 2. We are grateful to the referee for the valuable remarks which enabled us to improve the final layout.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally.

Corresponding author

Correspondence to Maciej Sablik.

Ethics declarations

Conflict of interest

No conflict of interest.

Ethics approval

Not applicable.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Code availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okeke, C.P., Sablik, M. Functional Equation Characterizing Polynomial Functions and an Algorithm. Results Math 77, 125 (2022). https://doi.org/10.1007/s00025-022-01664-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-022-01664-x

Keywords

Mathematics Subject Classification

Navigation