Skip to main content
Log in

Partition Bounded Sets Into Sets Having Smaller Diameters

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For each positive integer m and each real finite dimensional Banach space X, we set \(\beta (X,m)\) to be the infimum of \(\delta \in (0,1]\) such that each set \(A\subset X\) having diameter 1 can be represented as the union of m subsets of A whose diameters are at most \(\delta \). Elementary properties of \(\beta (X,m)\), including its stability with respect to X in the sense of Banach-Mazur metric, are presented. Two methods for estimating \(\beta (X,m)\) are introduced. The first one estimates \(\beta (X,m)\) using the knowledge of \(\beta (Y,m)\), where Y is a Banach space sufficiently close to X. The second estimation uses the information about \(\beta _X(K,m)\), the infimum of \(\delta \in (0,1]\) such that \(K\subset X\) is the union of m subsets having diameters not greater than \(\delta \) times the diameter of K, for certain classes of convex bodies K in X. In particular, we show that \(\beta (l_p^3,8)\le 0.925\) holds for each \(p\in [1,+\infty ]\) by applying the first method, and we proved that \(\beta (X,8)<1\) whenever X is a three-dimensional Banach space satisfying \(\beta _X(B_X,8)<\frac{221}{328}\), where \(B_X\) is the unit ball of X, by applying the second method. These results and methods are closely related to the extension of Borsuk’s problem in finite dimensional Banach spaces and to C. Zong’s computer program for Borsuk’s conjecture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bezdek, K., Khan, M.A.: The geometry of homothetic covering and illumination. In: Discrete Geometry and Symmetry, Springer Proc. Math. Stat., vol. 234, pp. 1–30. Springer, Cham (2018)

  2. Boltyanski, V., Gohberg, I.: Results and problems in combinatorial geometry. Cambridge University Press, Cambridge (1985). https://doi.org/10.1017/CBO9780511569258. Translated from the Russian

  3. Boltyanski, V., Martini, H., Soltan, P.: Excursions into Combinatorial Geometry. Universitext. Springer, Berlin (1997). https://doi.org/10.1007/978-3-642-59237-9

  4. Bondarenko, A.: On Borsuk’s conjecture for two-distance sets. Discrete Comput. Geom. 51(3), 509–515 (2014). https://doi.org/10.1007/s00454-014-9579-4

    Article  MathSciNet  MATH  Google Scholar 

  5. Borsuk, K.: Drei sätze über die \(n\)-dimensionale euklidische sphäre. Fundamenta 20, 177–190 (1933)

    MATH  Google Scholar 

  6. Bourgain, J., Lindenstrauss, J.: On covering a set in \({\bf R}^N\) by balls of the same diameter. In: Geometric aspects of functional analysis (1989–90), Lecture Notes in Math., vol. 1469, pp. 138–144. Springer, Berlin (1991). https://doi.org/10.1007/BFb0089220

  7. Brandenberg, R., González Merino, B.: The asymmetry of complete and constant width bodies in general normed spaces and the Jung constant. Israel J. Math. 218(1), 489–510 (2017). https://doi.org/10.1007/s11856-017-1471-5

    Article  MathSciNet  MATH  Google Scholar 

  8. Brass, P., Moser, W., Pach, J.: Research Problems in Discrete Geometry. Springer, New York (2005)

    MATH  Google Scholar 

  9. Danzer, L.: Über Durchschnittseigenschaften \(n\)-dimensionaler Kugelfamilien. J. Reine Angew. Math. 208, 181–203 (1961). https://doi.org/10.1515/crll.1961.208.181

    Article  MathSciNet  MATH  Google Scholar 

  10. Eggleston, H.: Covering a three-dimensional set with sets of smaller diameter. J. London Math. Soc. 30, 11–24 (1955). https://doi.org/10.1112/jlms/s1-30.1.11

    Article  MathSciNet  MATH  Google Scholar 

  11. Eggleston, H.: Sets of constant width in finite dimensional Banach spaces. Israel J. Math. 3, 163–172 (1965). https://doi.org/10.1007/BF02759749

    Article  MathSciNet  MATH  Google Scholar 

  12. Filimonov, V.: Covering planar sets. Sb. Math. 201(7–8), 1217–1248 (2010). https://doi.org/10.1070/SM2010v201n08ABEH004110

    Article  MathSciNet  MATH  Google Scholar 

  13. Filimonov, V.: On the covering of sets in \({\mathbb{R}}^m\). Mat. Sb. 205(8), 95–138 (2014). https://doi.org/10.1070/sm2014v205n08abeh004414

    Article  MathSciNet  Google Scholar 

  14. Grünbaum, B.: A simple proof of Borsuk’s conjecture in three dimensions. Proc. Cambridge Philos. Soc. 53, 776–778 (1957)

    Article  MathSciNet  Google Scholar 

  15. Grünbaum, B.: Borsuk’s partition conjecture in Minkowski planes. Bull. Res. Council Israel Sect. F 7F, 25–30 (1957/58)

  16. Heppes, A.: On the partitioning of three-dimensional point-sets into sets of smaller diameter. Magyar Tud. Akad. Mat. Fiz. Oszt. Közl. 7, 413–416 (1957)

    MathSciNet  Google Scholar 

  17. Heppes, A., Révész, P.: Zum Borsukschen Zerteilungsproblem. Acta Math. Acad. Sci. Hungar. 7, 159–162 (1956). https://doi.org/10.1007/BF02028200

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang, H., Slomka, B.A., Tkocz, T., Vritsiou, B.H.: Improved bounds for hadwiger’s covering problem via thin-shell estimates (2020). arXiv:1811.12548

  19. Jenrich, T., Brouwer, A.: A 64-dimensional counterexample to Borsuk’s conjecture. Electron. J. Combin. 21(4), Paper 4.29, 3 (2014)

  20. Kupavskiĭ, A., Raĭgorodskiĭ, A.: On the partition of three-dimensional sets into five parts of smaller diameter. Mat. Zametki 87(2), 233–245 (2010). https://doi.org/10.1134/S0001434610010281

    Article  MathSciNet  MATH  Google Scholar 

  21. Lassak, M.: An estimate concerning Borsuk partition problem. Bull. Acad. Polon. Sci. Sér. Sci. Math. 30(9-10), 449–451 (1983) (1982)

  22. Lassak, M.: Covering a plane convex body by four homothetical copies with the smallest positive ratio. Geom. Dedicata 21(2), 157–167 (1986). https://doi.org/10.1007/BF00182903

    Article  MathSciNet  MATH  Google Scholar 

  23. Martini, H., Soltan, V.: Combinatorial problems on the illumination of convex bodies. Aequationes Math. 57(2–3), 121–152 (1999). https://doi.org/10.1007/s000100050074

    Article  MathSciNet  MATH  Google Scholar 

  24. Papini, P., Wu, S.: Constructions of complete sets. Adv. Geom. 15(4), 485–498 (2015). https://doi.org/10.1515/advgeom-2015-0021

    Article  MathSciNet  MATH  Google Scholar 

  25. Schneider, R.: Stability for some extremal properties of the simplex. J. Geom. 96(1–2), 135–148 (2009). https://doi.org/10.1007/s00022-010-0028-0

    Article  MathSciNet  MATH  Google Scholar 

  26. Schramm, O.: Illuminating sets of constant width. Mathematika 35(2), 180–189 (1988). https://doi.org/10.1112/S0025579300015175

    Article  MathSciNet  MATH  Google Scholar 

  27. Soltan, V.: A theorem on full sets. Dokl. Akad. Nauk SSSR 234(2), 320–322 (1977)

    MathSciNet  Google Scholar 

  28. Tomczak-Jaegermann, N.: Banach-Mazur Distances and Finite-dimensional Operator Ideals, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 38. Longman Scientific & Technical, Harlow; copublished in the United States with John Wiley & Sons, Inc., New York (1989)

  29. Toth, G.: Measures of symmetry for convex sets and stability. Universitext. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23733-6

  30. Yu, L., Zong, C.: On the blocking number and the covering number of a convex body. Adv. Geom. 9(1), 13–29 (2009). https://doi.org/10.1515/ADVGEOM.2009.002

    Article  MathSciNet  MATH  Google Scholar 

  31. Zong, C.: A quantitative program for Hadwiger’s covering conjecture. Sci. China Math. 53(9), 2551–2560 (2010). https://doi.org/10.1007/s11425-010-4087-3

    Article  MathSciNet  MATH  Google Scholar 

  32. Zong, C.: A computer program for Borsuk’s conjecture (2020). arXiv:2001.03720

Download references

Acknowledgements

The authors are grateful to Professor Chuanming Zong for his supervision and discussion, and to Thomas Jenrich for his useful remark on the state-of-the-art of Borsuk’s conjecture.

Funding

This work is supported by the National Natural Science Foundation of China (grant numbers: 11921001 and 12071444), the National Key Research and Development Program of China (2018YFA0704701), and the Natural Science Foundation of Shanxi Province of China (201901D111141).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Senlin Wu.

Ethics declarations

Conflicts of interest

The author declares no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the National Natural Science Foundation of China (Grant numbers: 11921001 and 12071444), the National Key Research and Development Program of China (2018YFA0704701), and the Natural Science Foundation of Shanxi Province of China (201901D111141)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lian, Y., Wu, S. Partition Bounded Sets Into Sets Having Smaller Diameters. Results Math 76, 116 (2021). https://doi.org/10.1007/s00025-021-01425-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-021-01425-2

Keywords

Mathematics Subject Classification

Navigation