Skip to main content
Log in

Generalized Statistically Almost Convergence Based on the Difference Operator which Includes the (pq)-Gamma Function and Related Approximation Theorems

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

This paper is devoted to extend the notion of almost convergence and its statistical forms with respect to the difference operator involving (pq)-gamma function and an increasing sequence \((\lambda _n)\) of positive numbers. We firstly introduce some new concepts of almost \({\Delta }^{[a,b,c]}_{h, \alpha , \beta }(\lambda )\)-statistical convergence, statistical almost \({\Delta }^{[a,b,c]}_{h, \alpha , \beta }(\lambda )\)-convergence and strong almost \([{\Delta }^{[a,b,c]}_{h, \alpha , \beta }(\lambda )]_r\)-convergence. Moreover, we present some inclusion relations between these newly proposed methods and give some counterexamples to show that these are non-trivial generalizations of existing literature on this topic. We then prove a Korovkin type approximation theorem for functions of two variables through statistically almost \({\Delta }^{[a,b,c]}_{h, \alpha , \beta }(\lambda )\)-convergence and also present an illustrative example via bivariate non-tensor type Meyer–König and Zeller generalization of Bernstein power series. Furthermore, we estimate the rate of almost convergence of approximating linear operators by means of the modulus of continuity and derive some Voronovskaja type results by using the generalized Meyer–König and Zeller operators. Finally, some computational and geometrical interpretations for the convergence of operators to a function are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Banach S.: Theorie des Operations Lineaires, Monograe Mat., PWN, Warszawa (1932)

  2. Lorentz, G.G.: A contribution to the theory of divergent series. Acta Math. 80, 167–190 (1948)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fast, H.: Sur la convergence statistique. Colloq. Math. 2, 241–244 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  4. Steinhaus, H.: Sur la convergence ordinaire et la convergence asymptotique. Colloq. Math. 2, 73–74 (1951)

    Article  Google Scholar 

  5. Belen, C., Mohiuddine, S.A.: Generalized statistical convergence and application. Appl. Math. Comput. 219, 9821–9826 (2013)

    MathSciNet  MATH  Google Scholar 

  6. Fridy, J.: On the statistical convergence. Analysis 5, 301–313 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  7. Mohiuddine, S.A.: An application of almost convergence in approximation theorems. Applied Math. Letters 24, 1856–1860 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Mohiuddine, S.A.: Statistical \(A\)-summability with application to Korovkin’s type approximation theorem. J. Inequal. Appl. 2016 (2016) Article ID 101

  9. Šalát, T.: On statistically convergent sequences of real numbers. Math. Slovaca 30, 139–150 (1980)

    MathSciNet  MATH  Google Scholar 

  10. Mursaleen, M., Edely, O.H.H.: Generalized statistical convergence. Inf. Sci. 162, 287–294 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kadak, U., Braha, N.L., Srivastava, H.M.: Statistical weighted B-summability and its applications to approximation theorems. Appl. Math. Comput. 302, 80–96 (2017)

    MathSciNet  Google Scholar 

  12. Kadak, U.: Generalized weighted invariant mean based on fractional difference operator with applications to approximation theorems for functions of two variables. Results Math. 72(3), 1181–1202 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mursaleen, M., Edely, Osama H.H.: On the invariant mean and statistical convergence. Appl. Math. Lett. 22, 1700–1704 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Savaş, E.: Strong almost convergence and almost \(\lambda \)-statistical convergence. Hokkaido Math. J. 29(3), 531–536 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  15. Konca, S., Başarır, M.: On some spaces of almost lacunary convergent sequences derived by Riesz mean and almost lacunary statistical convergence in a real \(n\)-normed space. J. Inequal. Appl. 2014, 81 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Aktuğlu, H.: Korovkin type approximation theorems proved via \(\alpha \beta \)-statistical convergence. J. Comput. Appl. Math. 259, 174–181 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Aral, A., Gupta, V., Agarwal, R.P.: Applications of \(q\) -Calculus in Operator Theory. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  18. Acar, T.: \((p, q)\)-Generalization of Szász–Mirakyan operators. Math. Methods Appl. Sci. 39(10), 2685–2695 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mursaleen, M., Khan, F., Khan, A.: Approximation by \((p, q)\)-Lorentz polynomials on a compact disk. Complex Anal. Oper. Theory. 10(8), 1725–1740 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Mursaleen, M., Ansari, K.J., Khan, A.: On \((p, q)\)-analogue of Bernstein operators. Appl. Math. Comput. 266, 874–882 (2015), Erratum to ”On (p, q)-analogue of Bernstein operators”. Appl. Math. Comput. 278, 70–71 (2016)

  21. Acar, T., Aral, A., Mohiuddine, S.A.: On Kantorovich modification of \((p,q)\)-Baskakov operators. J. Inequal. Appl. 2016 (2016) Article ID 98

  22. Ilarslan, H.G.I., Acar, T.: Approximation by bivariate \((p, q)\)-Baskakov-Kantorovich operators. Georgian Math. J. (2016). https://doi.org/10.1515/gmj-2016-0057

  23. Acar, T., Mohiuddine, S.A., Mursaleen, M.: Approximation by \((p, q)\)-Baskakov-Durrmeyer-Stancu operators. Complex Anal. Oper. Theory (2017). https://doi.org/10.1007/s11785-016-0633-5

  24. Sadjang, P.N.: On the \((p, q)\)-Gamma and the \((p, q)\)-Beta functions, arXiv:1506.07394v1

  25. Kızmaz, H.: On certain sequence spaces. Canad. Math. Bull. 24(2), 169–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  26. Et, M., Colak, R.: On some generalized difference sequence spaces. Soochow J. Math. 21(4), 377–386 (1995)

    MathSciNet  MATH  Google Scholar 

  27. Baliarsingh, P.: On a fractional difference operator. Alexandria Eng. J. 55(2), 1811–1816 (2016)

    Article  Google Scholar 

  28. Baliarsingh, P., Nayak, L.: A note on fractional difference operators. Alexandria Eng. J. (2017). https://doi.org/10.1016/j.aej.2017.02.022

  29. Kadak, U.: On weighted statistical convergence based on \((p, q)\)-integers and related approximation theorems for functions of two variables. J. Math. Anal. Appl. 443, 752–764 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kadak, U.: Weighted statistical convergence based on generalized difference operator involving \((p, q)\)-gamma function and its applications to approximation theorems. J. Math. Anal. Appl. 448, 1633–1650 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  31. Altay, B., Başar, F.: Certain topological properties and duals of the domain of a triangle matrix in a sequence spaces. J. Math. Anal. Appl. 336, 632–645 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  32. Altay, B., Başar, F., Mursaleen, M.: On the Euler sequence spaces which include the spaces \(\ell _p\) and \(\ell _\infty \) I. Inform. Sci. 176(10), 1450–1462 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  33. Alotaibi, A., Mursaleen, M.: Generalized statistical convergence of difference sequences. Adv. Differ. Equ. 2013, 212 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  34. Baliarsingh, P.: Some new difference sequence spaces of fractional order and their dual spaces. Appl. Math. Comput. 219(18), 9737–9742 (2013)

    MathSciNet  MATH  Google Scholar 

  35. Kadak, U., Baliarsingh, P.: On certain Euler difference sequence spaces of fractional order and related dual properties. J. Nonlinear Sci. Appl. 8, 997–1004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  36. Kirişci, M., Kadak, U.: The method of almost convergence with operator of the form fractional order and applications. J. Nonlinear Sci. Appl. 10, 828–842 (2017)

    Article  MathSciNet  Google Scholar 

  37. Et, M., Altın, Y., Altınok, H.: On almost statistical convergence of generalized difference sequences of fuzzy numbers. Math. Model. Anal. 10(4), 345–352 (2005)

    MathSciNet  MATH  Google Scholar 

  38. Bohman, H.: On approximation of continuous and of analytic functions. Arkiv Math. 2, 43–56 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  39. Korovkin, P.P.: Linear Operators and Approximation Theory. Hindustan Publishing Corporation, Delhi (1960)

    Google Scholar 

  40. Gadjiev, A.D., Orhan, C.: Some approximation theorems via statistical convergence. Rocky Mt. J. Math. 32, 129–138 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Braha, N.L., Srivastava, H.M., Mohiuddine, S.A.: A Korovkin’s type approximation theorem for periodic functions via the statistical summability of the generalized de la Valle Poussin mean. Appl. Math. Comput. 228, 162–169 (2014)

    MathSciNet  MATH  Google Scholar 

  42. Edely, O.H.H., Mohiuddine, S.A., Noman, A.K.: Korovkin type approximation theorems obtained through generalized statistical convergence. Appl. Math. Lett. 23, 1382–1387 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Dirik, F., Şahin, P.O.: Statistical Relatively Equal Convergence and Korovkin-Type Approximation Theorem. Results Math. 72(3), 1613–1621 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  44. Meyer-Konig, W., Zeller, K.: Bernsteinsche potenzreihen. Studia Math. 19, 89–94 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  45. Ozarslan, M.A.: New Korovkin type theorem for non-tensor Meyer–Konig and Zeller Operators. Results Math. 69, 327–343 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lopez-Moreno, A.-J., Munoz-Delgado, F.-J.: Asymptotic expansion of multivariate conservative linear operators. J. Comput. Appl. Math. 150(2), 219–251 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  47. Guo, S., Qi, Q.: The moments for Meyer–Konig and Zeller operators. Appl. Math. Lett. 20, 719–722 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  48. Voronovskaja, E.V.: Détermination de la forme asymptotique de l’approximation des fonctions par les polynomes de M. Bernstein, Doklady Akademii Nauk SSSR 4, 79–85 (1932)

    MATH  Google Scholar 

  49. Acar, T., Aral, A., Raşa, I.: The new forms of Voronovskaya’s theorem in weighted spaces. Positivity 20(1), 25–40 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Erençin, A., Raşa, I.: Voronovskaya type theorems in weighted spaces. Numer. Funct. Anal. Optim. 37(12), 1517–1528 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  51. Acar, T.: Quantitative \(q\)-Voronovskaya and \(q\)-Grss-Voronovskaya-type results for \(q\)-Szasz operators. Georgian Math. J. 23(4), 459–468 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  52. Acar, T.: Asymptotic formulas for generalized Szasz–Mirakyan operators. Appl. Math. Comput. 263, 233–239 (2015)

    MathSciNet  Google Scholar 

  53. Altın, A., Doğru, O., Taşdelen, F.: The generalization of Meyer–Konig and Zeller operators by generating functions. J. Math. Anal. Appl. 312, 181194 (2005)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from King Abdulaziz University, Jeddah, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Uğur Kadak.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kadak, U., Mohiuddine, S.A. Generalized Statistically Almost Convergence Based on the Difference Operator which Includes the (pq)-Gamma Function and Related Approximation Theorems. Results Math 73, 9 (2018). https://doi.org/10.1007/s00025-018-0789-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00025-018-0789-6

Keywords

Mathematics Subject Classification

Navigation