Skip to main content
Log in

A Unified Framework for Linear Dimensionality Reduction in L1

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

For a family of interpolation norms \({\| \cdot \|_{1,2,s}}\) on \({\mathbb{R}^{n}}\), we provide a distribution over random matrices \({\Phi_s \in \mathbb{R}^{m \times n}}\) parametrized by sparsity level s such that for a fixed set X of K points in \({\mathbb{R}^{n}}\), if \({m \geq C s \log(K)}\) then with high probability, \({\frac{1}{2} \| \varvec{x} \|_{1,2,s} \leq \| \Phi_s (\varvec{x}) \|_1 \leq 2 \| \varvec{x} \|_{1,2,s}}\) for all \({\varvec{x} \in X}\). Several existing results in the literature roughly reduce to special cases of this result at different values of s: For s = n, \({\| \varvec{x} \|_{1,2,n} \equiv \| \varvec{x} \|_{1}}\) and we recover that dimension reducing linear maps can preserve the 1-norm up to a distortion proportional to the dimension reduction factor, which is known to be the best possible such result. For s = 1, \({\| \varvec{x} \|_{1,2,1} \equiv \| \varvec{x} \|_{2}}\), and we recover an 2/ 1 variant of the Johnson–Lindenstrauss Lemma for Gaussian random matrices. Finally, if \({\varvec{x}}\) is s- sparse, then \({\| \varvec{x} \|_{1,2,s} = \| \varvec{x} \|_1}\) and we recover that s-sparse vectors in \({\ell_1^n}\) embed into \({\ell_1^{\mathcal{O}(s \log(n))}}\) via sparse random matrix constructions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arratia R., Gordon L.: Tutorial on large deviations for the binomial distribution. Bull. Math. Biol. 51(1), 125–131 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  2. Baraniuk, R., Wakin, M.: Random projections of smooth manifolds. In: Found. Comp. Math, pp. 941–944 (2006)

  3. Baraniuk R.G., Davenport M., DeVore R.A., Wakin M.: A simple proof of the restricted isometry property for random matrices. Constr. Approx. 28(3), 253–263 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bennett, C., Sharpley, R.: Interpolation of Operators. New York (1988)

  5. Berinde, R., Gilbert, A.C., Indyk, P., Karloff, H., Strauss, M.J.: Combining geometry and combinatorics: a unified approach to sparse signal recovery. In: 2008 46th Annual Allerton Conference on Communication, Control, and Computing, pp. 798–805 (2008)

  6. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor” meaningful? In: Proceedings of International Conference on Database Theory, pp. 217–235 (1999)

  7. Cai T.T., Wang L., Xu G.: New bounds for restricted isometry constants. IEEE Trans. Inform. Theory 56(9), 4388–4394 (2010)

    Article  MathSciNet  Google Scholar 

  8. Candès E., Eldar Y., Needell D., Paige R.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31, 59–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Charikar, M., Sahai, A.: Dimension reduction in the \({\ell_1}\) norm. In: Proceedings of the 43rd Annual IEEE Symposium on Foundations of Computer Science, pp. 551–560. IEEE (2002)

  10. Cvetkovski, Z.: Schur’s inequality, Muirhead’s inequality and Karamata’s inequality. In: Inequalities, pp. 121–132. Springer, Berlin (2012)

  11. Dasgupta S., Gupta A.: An elementary proof of a theorem of Johnson and Lindenstrauss. Random Struct. Algorithms 22(1), 60–65 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  12. Foucart S., Rauhut H.: A Mathematical Introduction to Compressive Sensing. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  13. Garnaev A.Y., Gluskin E.D.: The widths of a Euclidean ball (Russian). Dokl. Akad. Nauk SSSR 277(5), 1048–1052 (1984)

    MathSciNet  MATH  Google Scholar 

  14. Haagerup U.: The best constants in the khintchine inequality. Studia Math. 70(3), 231–283 (1981)

    MathSciNet  MATH  Google Scholar 

  15. Halko N., Martinsson P., Tropp J.: Finding structure with randomness: stochastic algorithms for constructing approximate matrix decompositions. SIAM Rev. 53(2), 217–288 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Hinneburg, A., Aggarwal, C., Keim, D.: What is the nearest neighbor in high dimensional spaces? In: Proceedings of 26th International Conference on Very Large Data Bases, pp. 506–515 (2000)

  17. Holmstedt T.: Interpolation of quasi-normed spaces. Math. Scand. 26, 177–199 (1970)

    MathSciNet  MATH  Google Scholar 

  18. Indyk, P.: Algorithmic applications of low-distortion embeddings. In: Proceedings of 42nd IEEE Symposium on Foundations of Computer Science (2001)

  19. Indyk P.: Stable distributions, pseudorandom generators, embeddings and data stream computation. J. ACM 53(3), 307–323 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Johnson W.B., Lindenstrauss J.: Extensions of Lipschitz mappings into a Hilbert space. Contemp. Math. 26, 189–206 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kane, D., Nelson, J., Woodruff, D.: On the exact space complexity of sketching and streaming small norms. In: SODA, pp. 1161–1178 (2010)

  22. Krahmer F., Ward R.: New and improved Johnson–Lindenstrauss embeddings via the restricted isometry property. SIAM J. Math. Anal. 43(3), 1269–1281 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lee J., Mendel M., Naor A.: Metric structures in l 1: dimension, snowflakes, and average distortion. Eur. J. Combin. 26(8), 1180–1190 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  24. Li, P.: Estimators and tail bounds for dimension reduction in \({\ell_q}\), (\({0 < q \leq 2}\)) using stable random projections. In: SODA, pp. 10–19 (2008)

  25. Liberty E., Woolfe F., Martinsson P., Rokhlin V., Tygert M.: Randomized algorithms for the low-rank approximation of matrices. Proc. Natl. Acad. Sci. 104(51), 20167–20172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  26. Litvak A.E., Pajor A., Rudelson M., Tomczak-Jaegermann N.: Smallest singular value of random matrices and geometry of random polytopes. Adv. Math. 195(2), 491–523 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Mitzenmacher M., Upfal E.: Probability and Computing: Randomized Algorithms and Probabilistic Analysis. Cambridge University Press, Cambridge (2005)

    Book  MATH  Google Scholar 

  28. Montgomery-Smith S.J.: The distribution of Rademacher sums. Proc. Am. Math. Soc. 109(2), 517–522 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nelson, J., Woodruff, D.: Fast Manhattan sketches in data streams. In: PODS, pp. 99–110 (2010)

  30. Newman, I., Rabinovich, Y.: Finite volume spaces and sparsification. arXiv:1002.3541 (2010, preprint)

  31. Plan, Y., Vershynin, R.: One-bit compressed sensing by linear programming. Comm. Pure Appl. Math. 66(8), 1275–1297 (2013)

  32. Sarlos, T.: Improved approximation algorithms for large matrices via random projections. In: Proceedings of the 47th IEEE Symposium on Foundations of Computer Science (FOCS) (2006)

  33. Schechtman, G.: Dimension reduction in l p , 0 < p < 2. arXiv:1110.2148 (2011, preprint)

  34. Thorup M., Zhang Y.: Tabulation-based 5-independent hashing with applications to linear probing and second moment estimation. SIAM J. Comput. 41(2), 293–331 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ward R.: Compressed sensing with cross validation. IEEE Trans. Inform. Theory 55, 5773–5782 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Krahmer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krahmer, F., Ward, R. A Unified Framework for Linear Dimensionality Reduction in L1. Results. Math. 70, 209–231 (2016). https://doi.org/10.1007/s00025-015-0475-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-015-0475-x

Mathematics Subject Classification

Navigation