Skip to main content
Log in

Martelli’s Chaos in Inverse Limit Dynamical Systems and Hyperspace Dynamical Systems

  • Published:
Results in Mathematics Aims and scope Submit manuscript

Abstract

In this paper we investigate Martelli’s chaos of inverse limit dynamical systems and hyperspace dynamical systems which are both induced from dynamical systems on a compact metric space. We give the implication of Martelli’s chaos among those systems. More precisely, we show that inverse limit dynamical system is Martelli’s chaos if and only if so is original system, and we prove that hyperspace dynamical system is Martelli’s chaos implies original system is Martelli’s chaos if the orbit of every single point set of original system is unstable in hyperspace dynamical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aulander J., Yorke J.A.: Interval maps, factors of maps, and chaos. Tohoku Math. J. 32, 177–188 (1980)

    Article  MathSciNet  Google Scholar 

  2. Banks J.: Chaos for induced hyperspace maps. Chaos Solitons Fractals 25, 681–685 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banks J., Brooks J., Cairs G., Stacey P.: On the Devaney’s definition of chaos. Am. Math. Monthly 99, 332–334 (1992)

    Article  MATH  Google Scholar 

  4. Crannell A., Martelli M.: Dynamics of quasicontinuous systems. J. Differ. Equ. Appl. 6, 351–361 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Devaney R.L.: An Introduction to Chaotic Dynamical Systems. Addison-wesley, Redwood City (1989)

    MATH  Google Scholar 

  6. Engelking R.: General Topology. PWN, Warszawa (1977)

    MATH  Google Scholar 

  7. Fedeli A.: On chaotic set-valued discrete dynamical systems. Chaos Solitons Fractals 23, 1381–1384 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Forti G.L.: Various notions of chaos for discrete dynamical systems. A brief survey. Aequationes Math. 70, 1–13 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kolyada S., Snoha L.: Some aspects of topological transitivity—a survey. Grazer Math. Ber, Bericht nr. 334, 3–35 (1997)

    MathSciNet  MATH  Google Scholar 

  10. Li S.: Dynamical properties of the shift maps on the inverse limit spaces. Ergod. Th. Dynam. Sys. 12, 95–108 (1992)

    Article  MATH  Google Scholar 

  11. Li T.Y., Yorke J.: Period three implies chaos. Am. Math. Monthly 82, 985–992 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  12. Martelli M., Dang M., Seph T.: Defining chaos. Math. Mag. 71, 112–122 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Martelli, M.: Introduction to Dicrete Dynamical Systems and Chaos. Wiley- Interscience series in Discrete mathematics and Optimization, Wiley-Interscience, New York (1999)

  14. Michael E.: Topologies on spaces of subsets. Trans. Am. Math. Soc. 71, 152–182 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  15. Peris A.: Set-valued discrete chaos. Chaos Solitons Fractals 26, 19–23 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Robinson C.: Dynamical Systems: Stability, Symbolic Dynamics, and Chaos, 2nd edn. CRC Press Inc, Boca Raton (1999)

    MATH  Google Scholar 

  17. Robinson C.: What is a chaotic attractor?. Qual. Th. Dyn. Syst. 7, 227–236 (2008)

    Article  MATH  Google Scholar 

  18. Roman-Flores H.: A note on transitivity in set-valued discrete systems. Chaos Solitons Fractals 71, 99–104 (2003)

    Article  MathSciNet  Google Scholar 

  19. Roman-Flores H.: Robinson’s chaos in set-valued discrete systems. Chaos Solitons Fractals 25, 33–42 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vellekoop M., Bergund R.: On interval, transitivity=chaos. Am. Math. Monthly 101, 353–355 (1994)

    Article  MATH  Google Scholar 

  21. Wang L., Chen Z., Liao G.: The complexity of a minimal sub-shift on symbolic spaces. J. Math. Anal. Appl. 317, 136–145 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang Y., Wei G.: Characterizing mixing, weak mixing and transitivity of induced hyperspace dynamical systems. Top Appl. 155, 56–68 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. Wang Y., Wei G., Campbell H.: Sensitive dependence on intial conditions between dynamical systems and their induced hyperspace dynamical systems. Top Appl. 156, 803–811 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  24. Wiggins S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  25. Zhang, Z.S.: Principles of Differential Dynamical Systems. Science Press, Beijing (1987) (in chinese)

  26. Zhou, Z.L.: Symbolic Dynamical Systems. Shanghai Scientific and Technological Education Publishing House, Shanghai (1997) (in chinese)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lei Liu.

Additional information

This work was supported by the Natural Science Foundation of Henan Province (092300410148), People’s Republic of China.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Zhao, S. Martelli’s Chaos in Inverse Limit Dynamical Systems and Hyperspace Dynamical Systems. Results. Math. 63, 195–207 (2013). https://doi.org/10.1007/s00025-011-0188-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00025-011-0188-8

Mathematics Subject Classification (2010)

Keywords

Navigation