Skip to main content
Log in

Frequency-Dependent Attenuation Characteristics of Coda and Body Waves in the Kumaun Himalaya: Implications for Regional Geology and Seismic Hazards

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We investigate the frequency-dependent seismic attenuation characteristics of the crust beneath Kumaun Himalaya, India, using seismic coda waves (Qc−1) and high-frequency body waves (Qα−1 and Qβ−1). We used about 300 local earthquakes, well-recorded by 32 three-component broadband stations, for characterizing the seismic attenuation. The corresponding geodynamic implications are analyzed for the entire study region and for major tectonic segments such as the Lesser Himalaya (LH) and the Higher Himalaya (HH). The coda quality factor, Qc, computed from the single backscattering model, shows a dependence on both frequency (1–20 Hz) and lapse times (20–50 s). Expressed as power laws (Qc = Q0fn), Q0 (Q at 1 Hz) and n (frequency-dependence exponent) vary as 320 and 0.78 for lapse time window (LTW) 20 s to 656 and 0.55 at LTW 50 s. Similarly, the Q factor of body waves (Qα and Qβ), computed using the coda normalization and extended coda normalization methods (Yoshimoto et al. Geophys J Int 114: 165–174, 1993), also show strong frequency dependence. They are expressed as Qα = (36.28 ± 0.05)f(0.85±0.01) and Qβ = (50.58 ± 0.15)f(0.94±0.01). The ratio Qβ/Qα is found to be larger than unity in the whole frequency range for the entire study region. This observation is interpreted as an effect from seismically active regions and heterogeneous crustal regimes. Additionally, to characterize the dominant attenuation mechanism, we separate the quality factors for intrinsic attenuation (Qi−1) and scattering attenuation (Qs−1), using the Wennerberg (Bull Seismol Soc Am 83:279–290, 1993) formulation. Our study shows that the seismic attenuations are different for the LH and the HH segments. This possibly is due to the mechanism of underthrusting and deformation in the LH segments, leading to a dominant scattering attenuation and the multitude of fractures and pores in the crust. Our study shows that (1) Qc−1 is less than Qβ−1, which seems to adhere to Zeng’s (J Geophys Res 96:607–619, 1991) theory; (2) Qc−1 is closer to Qi−1; (3) the ratio (Qα−1/Qβ−1) lies between 1.7 and 2.25. The results are in agreement with several theoretical and laboratory experiments and suggest heterogenous crustal media. The varying attenuation characteristics, seismic energy budget and radiating efficiency have a significant role in seismic hazard analysis in Kumaun Himalaya.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Availability of Data and Material

Data are available upon request to the Director, CSIR-NGRI.

References

  • Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 74(2), 615–631.

    Article  Google Scholar 

  • Aki, K. (1980). Scattering and attenuation of shear waves in lithosphere. Journal of Geophysical Research, 85, 6496–6504.

    Article  Google Scholar 

  • Aki, K., & Chouet, B. (1975). Origin of coda waves; source, attenuation and scattering effects. Journal of Geophysical Research, 80, 3322–3342.

    Article  Google Scholar 

  • Akinci, A., Del Pezzo, E., & Ibanez, J. M. (1995). Separation of scattering and intrinsic attenuation in southern Spain and western Anatolia (Turkey). Geophysical Journal International, 121, 337–353.

    Article  Google Scholar 

  • Akinci, A., Del Pezzo, E., & Malagnini, L. (2020). Intrinsic and scattering seismic wave attenuation in the Central Apennines (Italy). Physics of the Earth and Planetary Interiors, 303, 106498. https://doi.org/10.1016/j.pepi.2020.106498

    Article  Google Scholar 

  • Akinci, A., & Eyidogan, H. (1996). Frequency-dependent attenuation of S and coda waves in Erzincan region (Turkey). Physics of the Earth and Planetary Interiors, 97, 109–119.

    Article  Google Scholar 

  • Ashish, P. A., Rai, S. S., & Gupta, S. (2009). Seismological evidence for shallow crustal melt beneath the Garhwal High Himalaya, India: Implications for Himalayan channel flow. Geophysical Journal International, 177(1), 1111–1120.

    Article  Google Scholar 

  • Bianco, F., Del Pezzo, E., Castellano, M., Ibanez, J., & Di Luccio, F. (2002). Separation of intrinsic and scattering seismic attenuation in the Southern Apennine zone, Italy. Geophysics Journal International, 150, 10–22.

    Article  Google Scholar 

  • Bilham, R., Larson, K., & Freymueller, J. (1997). GPS measurements of present day convergence across the Nepal Himalaya. Nature, 386, 61–64.

    Article  Google Scholar 

  • Burchfiel, C., Zhiliag, C., Hodges, K. V., Yuping, L., Royden, L., Changrong, D., & Jiene, X. (1992). The south Tibetan detachment system, Himalayan orogen: Extension contemporaneous with and parallel to shortening in a collisional mountain belt. Special Paper Geology Society of America, 269, 41.

    Google Scholar 

  • Burg, J. P., & Chen, G. M. (1984). Tectonics and structural zonation of southern Tibet. Nature, 311, 219–223.

    Article  Google Scholar 

  • Canas, J. A., Ugalde, A., Pujades, L. G., Carracedo, J. C., Soler, V., & Blanco, M. J. (1998). Intrinsic and scattering seismic wave attenuation in the Canary Islands. Journal of Geophysical Research, 103(15037–15), 050.

    Google Scholar 

  • Castro, R. R., Pacor, F., & Spallarossa, D. (2021). Depth-dependent shear-wave attenuation in central Apennines, Italy. Pure Applied Geophysics, 178, 2059–2075. https://doi.org/10.1007/s00024-021-02744-9

    Article  Google Scholar 

  • Chung, T. W., & Sato, H. (2001). Attenuation of high frequency P and S waves in the crust of southeastern South Korea. Bulletin of the Seismological Society of America, 91, 1867–1874.

    Article  Google Scholar 

  • Dainty, A. M. (1981). A scattering model to explain seismic Q observations in the lithosphere between 1 and 30 Hz. Geophysical Research Letters, 8, 1126–1128.

    Article  Google Scholar 

  • Del Pezzo, E., Giampiccolo, E., Tuvé, T., Di Grazia, G., Gresta, S., & Ibàñez, J. M. (2019). Study of the regional pattern of intrinsic and scattering seismic attenuation in Eastern Sicily (Italy) from local earthquakes. Geophysical Journal International, 218(2), 1456–1468. https://doi.org/10.1093/gji/ggz208

    Article  Google Scholar 

  • Del Pezzo, E., Ibanez, J., Morales, J., Akinci, A., & Maresca, R. (1995). Measurements of intrinsic and scattering seismic attenuation in the crust. Bull Seismology Society of America, 85, 1373–1380.

    Article  Google Scholar 

  • Fehler, M., Hoshiba, M., Sato, H., & Obara, K. (1992). Separation of scattering and intrinsic attenuation for the Kanto-Tokai region, Japan, using measurements of S-wave energy vs hypocentral distance. Geophysics Journal International, 108, 787–800.

    Article  Google Scholar 

  • Frankel, A. (1991). Mechanisms of Seismic Attenuation in the Crust: Scattering and anelasticity in New York State, South Africa, and Southern California. Journal of Geophysics Research, 96, 6269–6289.

    Article  Google Scholar 

  • Frankel, A., McGarr, A., Bicknell, J., Mori, J., Seeber, L., & Cranswick, E. (1990). Attenuation of high- frequency shear waves in the crust: Measurements from New York State, South Africa, and Southern California. Journal of Geophysical Research, 95, 17441–17457.

    Article  Google Scholar 

  • Frankel, A., & Wennerberg, L. (1987). Energy flux model of seismic coda: Separation of scattering and intrinsic attenuation. Bulletin Seismology Society of America, 77, 1223–1251.

    Article  Google Scholar 

  • Gao, L. S., Lee, L. C., Biswas, N. N., & Aki, K. (1983). Comparison of the effects between single and multiple scattering on coda waves for local earthquakes. Bulletin of the Seismological Society of America, 73, 377–389.

    Google Scholar 

  • Giampiccolo, E., Gresta, S., & Rasconà, F. (2004). Intrinsic and scattering attenuation from observed seismic codas in southeastern Sicily (Italy). Physics Earth Planet International, 145, 55–66.

    Article  Google Scholar 

  • Giampiccolo, E., Tusa, G., Langer, H., & Gresta, S. (2002). Attenuation in southeastern Sicily (Italy) by applying different coda methods. Journal of Seismology, 6, 487–501.

    Article  Google Scholar 

  • Gupta, S., Mahesh, P., Nagaraju, K., Sivaram, K., & Paul, A. (2022). 3-D seismic velocity structure of the Kumaun-Garhwal (Central) Himalaya: Insight into the Main Himalayan Thrust and earthquake occurrence. Geophysical Journal International, 229(1), 138–149. https://doi.org/10.1093/gji/ggab449

    Article  Google Scholar 

  • Gusev, A. A., & Abubakirov, I. R. (1987). Monte-Carlo simulation of record envelope of a near earthquake. Physics of the Earth and Planetary Interiors, 49, 30–36.

    Article  Google Scholar 

  • Hazarika, P., Kumar, M. R., & Kumar, D. (2013). Attenuation character of seismic waves in Sikkim Himalaya. Geophysical Journal International, 195, 544–557.

    Article  Google Scholar 

  • Ibanez, J. M., Del Pezzo, E., De Miguel, F., Herraiz, M., Alguaicil, G., & Morales, J. (1990). Depth dependent seismic attenuation in the Granada zone (southern Spain). Bulletin of the Seismological Society of America, 80, 1232–1244.

    Article  Google Scholar 

  • Iqbal, M. Z., Chung, T. W., Nam, M. J., & Yoshimoto, K. (2021). Temporal variation in scattering and intrinsic attenuation due to earthquakes in East Asia. Science and Reports, 11, 11260. https://doi.org/10.1038/s41598-021-90781-8

    Article  Google Scholar 

  • Jackson, I., Fitzgerald, J. D., Faul, U. H., & Tan, B. H. (2002). Grain-size-sensitive seismic wave attenuation in polycrystalline olivine. Journal of Geophysics Research, 107, ECV5.

    Article  Google Scholar 

  • Jin, A., & Aki, K. (1989). Spatial and temporal correlation between coda Q1 and seismicity and its physical mechanism. Journal of Geophysics Research, 94, 14041–14059.

    Article  Google Scholar 

  • Knopoff, L. (1964). Q. Rev Geophysics, 2, 625–660.

    Article  Google Scholar 

  • Kumar, N., Parvez, I. A., & Virk, H. S. (2005). Estimation of coda wave attenuation for NW Himalayan region using local earthquakes. Physics of the Earth and Planetary Interiors, 151, 243–258. https://doi.org/10.1016/j.pepi.2005.03.010

    Article  Google Scholar 

  • Larson, K. M., Burgmann, R., & Bilham, R. (1999). Freymueller JT (1999) Kinematics of the India-Eurasia collision zone from GPS measurements. Journal of Geophysical Research, 104, 1077–1093.

    Article  Google Scholar 

  • Le Fort, P. (1996). Evolution of the Himalaya. In A. Yin & M. Harrison (Eds.), The tectonic evolution of Asia (pp. 95–109). Press.

    Google Scholar 

  • Le Fort, P., Cuney, M., Deniel, C., France-Lanord, C., Sheppard, S. M. F., Upreti, B. N., & Vidal, P. (1987). Crustal generation of the Himalayan leucogranites. Tectonophysics, 134, 39–57.

    Article  Google Scholar 

  • Ma, X., & Huang, Z. (2020). Attenuation of high-frequency P and S waves in the crust of Central and Western Tien Shan. Pure Applied Geophysics, 177, 4127–4142. https://doi.org/10.1007/s00024-020-02504-11

    Article  Google Scholar 

  • Mahesh, P., Gupta, S., Rai, S. S., & Sarma, P. R. (2012). Fluid driven earthquakes in the Chamoli Region, Garhwal Himalaya: Evidence from local earthquake tomography. Geophysical Journal International, 191, 1295–1304.

    Google Scholar 

  • Mahesh, P., Rai, S. S., Sivaram, K., Paul, A., Gupta, S., Sarma, P. R., & Gaur, V. K. (2013). One dimensional reference velocity model and precise locations of earthquake hypocenters in the Kumaon-Garhwal Himalaya. Bulletin Seismology Society of America, 103, 328–339.

    Article  Google Scholar 

  • Mahood, M., Hamzehloo, H., & Doloei, G. J. (2009). Attenuation of high frequency P and S waves in the crust of the East-Central Iran. Geophysical Journal International, 179, 1669–1678.

    Article  Google Scholar 

  • Matsumoto, S., & Hasegawa, A. (1989). Two-dimensional coda Q structure beneath Tohoku, NE Japan. Geophysics Journal International, 99, 101–108.

    Article  Google Scholar 

  • Mayeda, K., Koyanagi, S., Hoshiba, M., Aki, K., & Zeng, Y. (1992). A comparative study of scattering, intrinsic and coda Q- ’ for Hawaii, Long Valley, and Central California between 1.5 and 15 Hz. Journal of Geophysical Research, 97, 6661–6674.

    Google Scholar 

  • Mishra, O. P., Vandana, V. K., & Gera, S. K. (2020). A new insight into seismic attenuation characteristics of Northwest Himalaya and its surrounding region: Implications to structural heterogeneities and earthquake hazards. Physics of the Earth and Planetary Interiors, 306(106500), 0031–9201. https://doi.org/10.1016/j.pepi.2020.106500

    Article  Google Scholar 

  • Mitchell, B. J. (1981). Regional variation and frequency dependence of Q in the crust of the United States. Bulletin of the Seismological Society of America, 71, 1531–1538.

    Article  Google Scholar 

  • Mitchell, B. J. (1995). Anelastic structure and evolution of the continental crust and upper mantle from seismic surface wave attenuation. Revision Geophysics, 33(4), 441–462.

    Article  Google Scholar 

  • Molnar, P., England, P., & Martinod, J. (1993). Mantle dynamics, the uplift of the Tibetan Plateau, and the Indian monsoon. Reviews of Geophysics, 31, 357–396.

    Article  Google Scholar 

  • Monika., Kumar, P., Sandeep., Kumar, S., Joshi, A., & Devi, S. (2020). Spatial variability studies of attenuation characteristics of Qα and Qβ in Kumaon and Garhwal region of NW Himalaya. Natural Hazards, 103, 1219–1237. https://doi.org/10.1007/s11069-020-04031-7

  • Mukhopadhyay, S., & Sharma, J. (2010). Attenuation characteristics of Garwhal-Kumaun Himalayas from analysis of coda of local earthquakes. Journal of Seismology, 14(4), 693–713.

    Article  Google Scholar 

  • Mukhopadhyay, S., Sharma, J., Del-Pezzo, E., & Kumar, N. (2010). Study of attenuation mechanism for Garwhal-Kumaun Himalayas from analysis of coda of local earthquakes. Physics of the Earth and Planetary Interiors, 180, 7–15.

    Article  Google Scholar 

  • Mukhopadhyay, S., Tyagi, C., & Rai, S. S. (2006). The Attenuation mechanism of seismic waves in northwestern Himalayas. Geophysical Journal International, 167, 354–360.

    Article  Google Scholar 

  • Ni, J., & Barazangi, M. (1984). Seismotectonics of the Himalayan collision zone: Geometry of the underthrusting Indian plate beneath the Himalayas. Journal of Geophysical Research, 89, 1147–1163.

    Article  Google Scholar 

  • Padhy, S., & Subhadra, N. (2013). Separation of intrinsic and scattering seismic wave attenuation in Northeast India. Geophysical Journal International, 195, 1892–1903.

    Article  Google Scholar 

  • Padhy, S., Subhadra, N., & Kayal, J. R. (2011). Frequency-dependent attenuation of body and coda waves in the Andaman Sea basin. Bulletin of the Seismological Society of America, 101(1), 109–125. https://doi.org/10.1785/0120100032

    Article  Google Scholar 

  • Patane, D., Ferrucci, F., & Gresta, S. (1994). Spectral features of microearthquakes in volcanic areas: attenuation in the crust and amplitude response of the site at Mt. Etna, Italy. Bulletin Seismology Society of America, 84, 1842–1860.

    Google Scholar 

  • Paul, A., Gupta, S. C., & Pant, C. (2003). Coda Q estimates for Kumaun Himalaya. Proceedings Indian Academy Science (earth Planetary Science), 112, 569–576.

    Article  Google Scholar 

  • Pulli, J. J. (1984). Attenuation of coda waves in New England. Bulletin of the Seismological Society of America, 74, 1149–1166.

    Google Scholar 

  • Pulli, J. J., & Aki, K. (1981). Attenuation of seismic waves in the lithosphere: Comparison of active and stable areas. In J. E. Beavers (Ed.), Earthquakes and Earthquake Engineering: The Eastern US (pp. 129–141). Ann Arbor Science Publishers.

    Google Scholar 

  • Rautian, T. G., & Khalturin, V. I. (1978). The use of coda for determination of the earthquake source spectrum. Bulletin of the Seismological Society of America, 68, 923–948.

    Article  Google Scholar 

  • Roecker, S. W., Tucker, B., King, J., & Hartzfield, D. (1982). Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bulletin of the Seismological Society of America, 72, 129–149.

    Article  Google Scholar 

  • Sato, H. (1978). Mean free path of S-waves under the Kanto district of Japan. Journal of Physics of the Earth, 26(2), 185–198.

    Article  Google Scholar 

  • Sato, H. (1982). Attenuation of S-waves in the lithosphere due to scattering by its random velocity structure. Journal of Physics of the Earth, 87, 7779–7785.

    Google Scholar 

  • Sato, H., & Fehler, M. (1998). Seismic wave propagation and scattering in the heterogeneous earth (Vol. 308, p. 319). Springer.

    Book  Google Scholar 

  • Searle MP (1991) Geology and Tectonics of the Karakoram Mountains. John Wiley & Sons, Chichester, with Geological Map of the Central Karakoram, scale 1:250,000. Department Earth Sciences, University of Oxford, Oxford.

  • Seeber L, Armbruster J (1981) Great detachment earthquakes along the Himalayan are and long-term forecasting I Earthquake Prediction. An International Review D.W Simpson, P.G. Richards (Eds.), Am Gcophys Union. Maurice Ewing Ser., 4:254–279

  • Shang, T., & Gao, L. (1988). Transportation theory of multiple scattering and its application to seismic coda waves of impulse source. Sci Sinica Ser. B, 31, 1503–1514.

    Google Scholar 

  • Sharma, B., Gupta, A. K., Kameswari Devi, D., Kumar, D., Teotia, S. S., & Rastogi, B. K. (2008). Attenuation of high-frequency seismic waves in Kachchh Region, Gujarat, India. Bulletin of the Seismological Society of America, 98(5), 2325–2340. https://doi.org/10.1785/0120070224

    Article  Google Scholar 

  • Sheehan, A. F., de la Torre, T. L., Monsalve, G., Abers, G. A., & Hacker, B. R. (2014). Physical state of himalayan crust and uppermost mantle: Constraints from seismic attenuation and velocity tomography. J Geophys Res: Solid Earth, 119(1), 567–580. https://doi.org/10.1002/2013JB010601

    Article  Google Scholar 

  • Singh, C., Bharathi, V. S., & Chadha, R. (2012). Lapse time and frequency-dependent attenuation characteristics of Kumaun Himalaya. Journal of Asian Earth Sciences, 54, 64–71.

    Article  Google Scholar 

  • Singh, S., & Herrmann, R. B. (1983). Regionalization of crustal coda Q in the continental United States. J Geophys Res Solid Earth, 88(B1), 527–538.

    Article  Google Scholar 

  • Tapponnier P, Peltzer G, Armijo R (986) On the mechanics of the collision between India and Asia, in Collision Tectonics, Geological Society of London Special Publication, pp. 115–157, eds Coward M.P. Ries A.C.

  • Tripathi, J. N., Singh, P., & Sharma, M. (2014). Attenuation of high-frequency P- and S-waves in Garhwal Himalaya, India. Tectonophysics, 636, 216–227. https://doi.org/10.1016/j.tecto.2014.08.015

    Article  Google Scholar 

  • Vassiliou M, Salvado CA, Tittman BR (1982) Seismic attenuation, in CRC Handbook of Physical Properties of Rocks, R. S. Carmichael (Editor), 3, CRC Press, Boca Raton, Florida

  • Wennerberg, L. (1993). Multiple-scattering interpretations of coda-Q measurements. Bulletin of the Seismological Society of America, 83, 279–290.

    Article  Google Scholar 

  • Winkler, K. W., & Nur, A. (1982). Seismic attenuation: Effects of pore fluids and frictional sliding. Geophysics, 47, 1–15.

    Article  Google Scholar 

  • Yoshimoto, K. H., Sato, H., & Ohtake, M. (1993). Frequency dependent attenuation of P and S waves in the Kanto area, Japan, Based on the Coda Normalization Method. Geophysics Journal International, 114, 165–174.

    Article  Google Scholar 

  • Zeng, Y., Su, F., & Aki, K. (1991). Scattered wave energy propagation in a random isotropic scattering medium, I, theory. Journal of Geophysical Research, 96, 607–619.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank CSIR-NGRI for granting permission to publish this work. Author (SK) gratefully acknowledges the early guidance of Dr. Dinesh Kumar in the computation of seismic attenuation. All the field members of the seismological field in Kumaun-Garhwal Himalaya are duly acknowledged for their hard work and data acquisition. We acknowledge the support under CSIR-NGRI projects SHIVA [MLP0001-28-FBR-1] and ProbHim [MLP-FBR-003]. The authors sincerely acknowledge the Editor, Dr Yangfan Deng, and the three anonymous reviewers whose suggestions have significantly improved the manuscript. The CSIR-NGRI reference number of the manuscript is NGRI/Lib/2022/ Pub-09.

Funding

CSIR NGRI.

Author information

Authors and Affiliations

Authors

Contributions

KS: Conceptualization, data curation, visualization, methodology, writing—original draft preparation, reviewing and editing. SG: Visualization, writing—reviewing and editing.

Corresponding author

Correspondence to K. Sivaram.

Ethics declarations

Conflicts of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaram, K., Gupta, S. Frequency-Dependent Attenuation Characteristics of Coda and Body Waves in the Kumaun Himalaya: Implications for Regional Geology and Seismic Hazards. Pure Appl. Geophys. 179, 949–972 (2022). https://doi.org/10.1007/s00024-022-02963-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-022-02963-8

Keywords

Navigation