Skip to main content
Log in

The December 22, 2018 Anak Krakatau, Indonesia, Landslide and Tsunami: Preliminary Modeling Results

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

On the evening of December 22, 2018, the coasts of the Sunda Strait, Indonesia, were hit by a tsunami generated by the collapse of a part of the Anak Krakatau volcano. Hundreds of people were killed, thousands were injured and displaced. This paper presents a preliminary modeling of the volcano flank collapse and the tsunami generated based on the results of a 2D depth-averaged coupled model involving a granular rheology and a Coulomb friction for the slide description and dispersive effects for the water flow part. With a reconstructed total volume (subaerial and submarine) of the landslide of 150 million \(\hbox {m}^{3}\) inferred from pre and post-collapse satellite and aerial images, the comparison of the simulated water waves with the observations (tide gauges located all around the strait, photographs and field surveys) is satisfactory. Due to the lack of information for the submarine part of the landslide, the reconstructed submarine slope is assumed to be approximately constant. A significant time delay on the results and particularly in the Bandar Lampung Bay could be attributed to imprecisions of bathymetric data. The sensitivity to the basal friction and to dispersive effects is analyzed through numerical tests. Results show that the influence of the basal friction angle on the simulated wave heights decreases with distance and that a value of \(2^{\circ }\) gives consistent results with the observations. The dispersive effects are assessed by comparing water waves simulated by a shallow water model and a Boussinesq model. Simulations with frequency dispersion produce longer wave periods and smaller wave amplitudes in the Sunda Strait and particularly in deep waters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. https://bnpb.go.id/volume-tubuh-gunung-anak-krakatau-berkurang-jumlah-korban-tsunami-bertambah, last accessed 10 september 2019.

  2. https://www.oysteinlundandersen.com/krakatau-volcano-witnessing-the-eruption-tsunami-22december2018/.

  3. https://emergency.copernicus.eu/mapping/list-of-components/EMSR335.

  4. https://www.youtube.com/watch?v=2ERXCR86GU4.

  5. https://www.oysteinlundandersen.com/krakatau-volcano/krakatau-eruption-seen-from-anyer-west-java-17th-november-2018/.

References

  • Abadie, S., Harris, J., Grilli, S., & Fabre, R. (2012). Numerical modeling of tsunami waves generated by the flank collapse of the Cumbre Vieja Volcano (La Palma, Canary Islands): Tsunami source and near fiedl effects. Journal of Geophysical Research, 117, 5.

    Google Scholar 

  • Assier-Rzadkiewicz, S., Heinrich, P., Sabatier, P., Savoye, B., & Bourillet, J. (2000). Numerical modelling of a landslide-generated tsunami: The 1979 Nice event. Pure and Applied Geophysics, 157(10), 1707–1727.

    Google Scholar 

  • Bondevik, S., Løvholt, F., Harbitz, C., Mangerud, J., Dawson, A., & Svendsen, J. (2005). The Storegga slide tsunami—comparing field observations with numerical simulations. Marine and Petroleum Geology, 22, 195–208.

    Google Scholar 

  • Camus, G., Gourgaurd, A., & Vincent, P. (1987). Petrologic evolution of Krakatau (Indonesia): Implications for a future activity. Journal of Volcanology and Geothermal Research, 33, 299–316.

    Google Scholar 

  • Choi, B., Pelinovsky, E., Kim, K., & Lee, J. (2003). Simulation of the trans-oceanic tsunami propagation due to the 1883 Krakatau volcanic eruption, Copernicus Publications on behalf of the European Geosciences Union. Natural Hazards and Earth System Science, 3(5), 321–332.

    Google Scholar 

  • Cooke, R. (1981). Eruptive history of the volcano at Ritter Island. Geological Survey of Papua New Guinea Memoir, 10, 115–123.

    Google Scholar 

  • Deplus, C., Bonvalot, S., Dahrin, D., Diament, M., Harjono, H., & Dubois, J. (1995). Inner structure of the Krakatoa volcanic complex (Indonesia) from gravity and bathymetry data. Journal of Volcanology and Geothermal Research, 64, 23–51.

    Google Scholar 

  • Fine, I. V., Rabinovich, A. B., Thomson, R. E., & Kulikov, E. A. (2003). Numerical modeling of tsunami generation by submarine and subaerial landslides (pp. 69–88). Dordrecht: Springer.

    Google Scholar 

  • Franz, M., Jaboyedoff, M., Locat, J., & Podladchikov, Y. (2015). Testing a landslide-generated tsunami model. The case of the Nicolet landslide (Québec, Canada), In Conference GEOQuébec 2015, Québec City, QC, Canada.

  • Fritz, H., Mohammed, F., & Yoo, J. (2009). Lituya Bay landslide impact generated mega-tsunami 50th anniversary. Pure and Applied Geophysics, 166, 153–175.

    Google Scholar 

  • Giachetti, T., Paris, R., Kelfoun, K., & Ontowirjo, B. (2012). Tsunami hazard related to a flank collapse of Anak Krakatau volcano, Sunda Strait, Indonesia. Geological Society London Special Publication, 361, 79–89.

    Google Scholar 

  • Giachetti, T., Paris, R., Kelfoun, K., & Pérez-Torrado, F. (2011). Numerical modelling of the tsunami triggered by the Güìmar debris avalanche, Tenerife (Canary Islands): Comparison with field-based data. Marine Geology, 284, 189–202.

    Google Scholar 

  • Glimsdal, S., L’Heureux, J.-S., Harbitz, C., & Løvholt, F. (2016). The 29th January 2014 submarine landslide at Statland, Norway-landslide dynamics, tsunami generation, and run-up. Landslides, 13(6), 1435–1444.

    Google Scholar 

  • Glimsdal, S., Pedersen, G., Harbitz, C., & Løvholt, F. (2013). Dispersion of tsunamis: Doest it really matter? Natural Hazards and Earth System Sciences, 13, 1507–1526.

    Google Scholar 

  • Gouhier, M., & Paris, R. (2019). SO2 and tephra emissions during the December 22, 2018 Anak Krakatau flank-collapse eruption. Volcanica, 2(2), 91–103.

    Google Scholar 

  • Grilli, S., O’Reilley, C., Harris, J., Tajalli Bakhsh, T., Tehranirad, B., Banihashemi, S., et al. (2015). Modeling of SMF tsunami hazard along the upper US East Coast: Detailed impact around Ocean City, MD. Natural Hazards, 76, 705–746.

    Google Scholar 

  • Grilli, S., Tappin, D., Carey, S., Watt, S., Ward, S., Grilli, A., et al. (2019). Modelling of the tsunami from the December 22, 2018 lateral collapse of Anak Krakatau volcano in the Sunda Straits, Indonesia. Scientific Reports, 9, 11946.

    Google Scholar 

  • Grilli, S., & Watts, P. (2005). Tsunami generation by submarine mass failure. I: Modeling, experimental validation, and sensitivity analyses. Journal of Waterway, Port, Coastal and Ocean Engineering, 131(6), 283–297.

    Google Scholar 

  • Haflidason, H., Sejrup, H., Nygard, A., Meinert, J., Bryn, P., Lien, R., et al. (2004). The Storegga slide: Architecture, geometry and slide development. Marine Geology, 213(1–4), 201–234.

    Google Scholar 

  • Harbitz, C. (1992). Model simulations of tsunamis generated by the Storegga slides. Marine Geology, 105(1–4), 1–21.

    Google Scholar 

  • Harbitz, C., Glimsdal, S., Løvholt, F., Kveldsvik, V., Pedersen, G., & Jensen, A. (2014). Rockslide tsunamis in complex fjords: From an unstable rock slope at Åkerneset to tsunami risk in western Norway. Coastal Engineering, 88, 101–122.

    Google Scholar 

  • Harbitz, C., Pedersen, G., & Gjevik, B. (1993). Numerical simulations of large water waves due to landslides. Journal of Hydraulic Engineering, 119(12), 1325–1342.

    Google Scholar 

  • Harjono, H., Diament, M., Dubois, J., & Larue, M. (1991). Seismicity of the Sunda strait: Evidence for crustal extension and volcanological implications. Tectonics, 10, 17–30.

    Google Scholar 

  • Heidarzadeh, M., Ishibe, T., Sandanbata, O., Muhari, A., & Wijanarto, A. (2020). Numerical modeling of the subaerial landslide source of the 22 December 2018 Anak Krakatoa volcanic tsunami Indonesia. Ocean Engineering, 20, 195.

    Google Scholar 

  • Heidarzadeh, M., Krastel, S., & Yalçiner, A. (2014). The state-of-the-art numerical tools for modeling landslide tsunamis: A short review. In S. Krastel, J.-H. Behrmann, D. Völker, M. Stipp, C. Berndt, R. Urgeles, J. Chaytor, K. Huhn, M. Strasser, & C. Harbitz (Eds.), Submarine mass movements and their consequences: 6th international symposium (pp. 483–495). Cham: Springer.

    Google Scholar 

  • Heinrich, P., Boudon, G., Komorowski, J. C., Sparks, R. S. J., Herd, R., & Voight, B. (2001b). Numerical simulation of the December 1997 Debris Avalanche in Montserrat, Lesser Antilles. Geophysical Research Letters, 28(13), 2529–2532.

    Google Scholar 

  • Heinrich, P., & Piatanesi, A. (2000). Near-field modeling of the July 17, 1998 tsunami in Papua New Guinea. Geophysical Research Letters, 27(19), 3037–3040.

    Google Scholar 

  • Heinrich, P., Piatanesi, A., & Hébert, H. (2001a). Numerical modelling of tsunami generation and propagation from submarine slumps: The 1998 Papua New Guinea event. Geophysical Journal International, 145(1), 97–111.

    Google Scholar 

  • Horrillo, J., Wood, A., Kim, G.-B., & Parambath, A. (2013). A simplified 3-D Navier–Stokes numerical model for landslide-tsunami: Application to the Gulf of Mexico. Journal of Geophysical Research: Oceans, 118(12), 6934–6950.

    Google Scholar 

  • Huang, B., Yin, Y., Wang, S., Tan, J., & Liu, G. (2017). Analysis of the Tangjiaxi landslide-generated waves in the Zhexi Reservoir, china, by a granular flow coupling model. Natural Hazards and Earth System Sciences, 17, 657–670.

    Google Scholar 

  • Hébert, H., Piatanesi, A., Heinrich, P., & Schindelé, F. (2002). Numerical modeling of the September 13, 1999 landslide and tsunami on Fatu Hiva Island (French Polynesia). Geophysical Research Letters, 29(10), 10–13.

    Google Scholar 

  • Jiang, L., & LeBlond, P. (1992). The coupling of a submarine slide and the surface waves which it generates. Journal of Geophysical Research: Oceans, 97(C8), 12731–12744.

    Google Scholar 

  • Johnson, R. (1987). Large-scale volcanic cone collapse; the 1888 slope failure of Ritter volcano. Bulletin of Volcanology, 49, 669–679.

    Google Scholar 

  • Kelfoun, K., Giachetti, T., & Labazuy, P. (2010). Landslide-generated tsunamis at Réunion Island. Journal of Geophysical Research: Earth Surface, 115, F4.

    Google Scholar 

  • Kirby, J., Shi, F., Nicolsky, D., & Misra, S. (2016). The 27 April 1975 Kitimat, British Columbia, submarine landslide tsunami: A comparison of modeling approaches. Landslides, 13, 1421–1434.

    Google Scholar 

  • Labbé, M., Donnadieu, C., Daubord, C., & Hébert, H. (2012). Refined numerical modeling of the 1979 tsunami in Nice (French Riviera): Comparison with coastal data. Journal of Geophysical Research: Earth Surface, 117, F1.

    Google Scholar 

  • Le Friant, A., Heinrich, P., Deplus, C., & Boudon, G. (2003). Numerical simulation of the last flank-collapse event of Montagne Pelée, Martinique, Lesser Antilles. Geophysical Research Letters, 30, 2.

    Google Scholar 

  • L’Heureux, J.-S., Glimsdal, S., Longva, O., Hansen, L., & Harbitz, C. (2011). The 1888 shoreline landslide and tsunami in Trondheimsfjorden, central Norway. Marine Geophysical Research, 32(1), 313–329.

    Google Scholar 

  • Liu, P.-F., Woo, S.-B., & Cho, Y.-S. (1998). Computer programs for tsunami propagation and inundation (p. 25). Cornell: Cornell University.

    Google Scholar 

  • Løvholt, F., Pedersen, G., & Gisler, G. (2008). Oceanic propagation of a potential tsunami from the La Palma Island. Journal of Geophysical Research: Oceans, 113(9), 1–21.

    Google Scholar 

  • Ma, G., Kirby, J., Hsu, T.-J., & Shi, F. (2015). A two-layer granular landslide model for tsunami wave generation: Theory and computation. Ocean Modelling, 93, 40–55.

    Google Scholar 

  • Ma, G., Shi, F., & Kirby, J. (2012). Shock-capturing non-hydrostatic model for fully dispersive surface wave processes. Ocean Modelling, 43–44, 22–35.

    Google Scholar 

  • Mangeney, A., Heinrich, P., & Roche, R. (2000). Analytical solution for testing debris avalanche numerical models. Pure and Applied Geophysics, 157, 1081–1096.

    Google Scholar 

  • Masson, D., Harbitz, C., Wynn, R., Pedersen, G., & Løvholt, F. (2006). Submarine landslides: Processes, triggers and hazard prediction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 364(1845), 2009–2039.

    Google Scholar 

  • Miller, D. J. (1960). Giant waves in Lituya Bay, Alaska. US Geological Survey Professional Paper, 354-C.

  • Muhari, A., Heidarzadeh, M., Susmoro, H., Nugroho, H., Kriswati, E., Supartoyo, W. A., et al. (2019). The December 2018 Anak Krakatau Volcano tsunami as inferred from post-tsunami field surveys and spectral analysis. Pure and Applied Geophysics, 21, 1–5.

    Google Scholar 

  • Nishimura, S., Nishida, J., Yokoyama, T., & Hehuwat, F. (1986). Neotectonics of the Straits of Sunda, Indonesia. Journal of Southeast Asian Earth Science, 1, 81–91.

    Google Scholar 

  • Nomanbhoy, N., & Satake, K. (1995). Generation mechanism of tsunamis from the 1883 Krakatau eruption. Geophysical Reasearch Letters, 22(4), 509–512.

    Google Scholar 

  • Okal, E. A., & Synolakis, C. E. (2003). A theoretical comparison of tsunamis from dislocations and landslides. Pure and Applied Geophysics, 160(10–11), 2177–2188.

    Google Scholar 

  • Paris, A., Okal, E., Guérin, C., Heinrich, P., Schindelé, F., & Hébert, H. (2019). Numerical modeling of the June 17, 2017 landslide and tsunami events in Karrat Fjord, west Greenland. Pure and Applied Geophysics, 176(7), 3035–3057.

    Google Scholar 

  • Pawlowicz, R., Beardsley, B., & Lentz, S. (2002). Classical tidal harmonic analysis including error estimates in MATLAB using T\_TIDE. Computers and Geosciences, 28, 929–937.

    Google Scholar 

  • Pedersen, G. & Løvholt, F. (2008). Documentation of a global Boussinesq solver. Preprint series in Applied Mathematics 1. http://urn.nb.no/URN:NBN:no-27775.

  • Poupardin, A., Heinrich, P., Frère, A., Imbert, D., Hébert, H., & Flouzat, M. (2017). The 1979 submarine landslide-generated tsunami in Mururoa, French Polynesia. Pure and Applied Geophysics, 174, 3293–3311.

    Google Scholar 

  • Rodriguez, M., Chamot-Rooke, N., Hébert, H., Fournier, M., & Huchon, P. (2013). Owen Ridge deep-water submarine landslides: Implications for tsunami hazard along the Oman coast. Natural Hazards and Earth System Science, 13, 417–424.

    Google Scholar 

  • Satake, K., & Kato, Y. (2001). The 1741 Oshima–Oshima eruption: Extent and volume of submarine debris avalanche. Geophysical Research Letters, 28, 427–430.

    Google Scholar 

  • Satake, K., Smith, J., & Shinozaki, K. (2002). ‘Three-dimensional reconstruction and tsunami model of the Nuuanu and Wailau giant landslides (pp. 333–346). Hawaii: American Geophysical Union Geophysical Monograph Series.

    Google Scholar 

  • Savage, S. B., & Hutter, K. (1989). The motion of a finite mass of granular material down a rough incline. Journal of Fluid Mechanics, 199, 177–215.

    Google Scholar 

  • Savage, S. B., & Hutter, K. (1991). The dynamics of avalanches of granular materials from initiation to runout. Part I: Analysis. Acta Mechanica, 86(1), 201–223.

    Google Scholar 

  • Shi, F., Kirby, J., Harris, J., Geiman, J., & Grilli, S. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43–44, 36–51.

    Google Scholar 

  • Sigurdsson, H., Carey, S., Mandeville, C., & Bronto, S. (1991). Pyroclastic flows of the 1883 Krakatau eruption. Eos Transactions of the American Geophysical Union, 72(36), 377–392.

    Google Scholar 

  • Simkin, T., & Fiske, R. (1983). Krakatau 1883: The volcanic eruption and its effects. Washington, D.C.: Smithsonian Institution Press.

    Google Scholar 

  • Skvortsov, A., & Bornhold, B. (2007). Numerical simulation of the landslide-generated tsunami in Kitimat Arm, British Columbia, Canada, 27 April 1975. Journal of Geophysical Research: Earth Surface, 112, 2.

    Google Scholar 

  • Stehn, C. (1929). The geology and volcanism of the Krakatau Group. In Proceedings of the Fourth Pacific science congress, pp. 1–55.

  • Sudradjat, A. (1982). The morphological development of Anak Krakatau Volcano, Sunda Strait. Geologi Indonesia, 9, 1–11.

    Google Scholar 

  • Susilohadi, S., Gaedicke, C., & Djajadihardja, D. (2009). Structures and sedimentary deposition in the Sunda Strait, Indonesia. Tectonophysics, 467, 55–71.

    Google Scholar 

  • Synolakis, C. E., Bardet, J.-P., Borrero, J. C., Davies, H. L., Okal, E. A., Silver, E. A., Sweet, S., & Tappin, D. R. (2002). The slump origin of the 1998 Papua New Guinea tsunami. In Proceedings of the Royal Society of London, series A: Mathematical, physical and engineering sciences, Vol. 458, The Royal Society, pp. 763–789.

  • Takabatake, T., Shibayama, T., Esteban, M., Achiari, H., Nurisman, N., Gelfi, M., et al. (2019). Field survey and evacuation behaviour during the 2018 Sunda Strait tsunami. Coastal Engineering Journal, 20, 1–21.

    Google Scholar 

  • Tappin, D., Grilli, S., Harris, J., Geller, R., Masterlark, T., Kirby, J., et al. (2014). Did a submarine landslide contribute to the 2011 Tohoku tsunami? Marine Geology, 357, 344–361.

    Google Scholar 

  • Tappin, D., Watts, P., & Grilli, S. (2008). The Papua New Guinea tsunami of 17 July 1998: Anatomy of a catastrophic event. Natural Hazards and Earth System Sciences, 8, 243–266.

    Google Scholar 

  • TDMRC (2019) The latest update from post-Sunda Strait tsunami survey. http://tdmrc.unsyiah.ac.id/the-latest-update-from-post-sunda-strait-tsunami-survey/.

  • Walter, T., Haghighi, M., Schneider, F., Coppola, D., Motagh, M., Saul, J., Babeyko, A., Dahm, T., Troll, V., Tilmann, F., Heimann, S., Valade, S., Triyono, R., Khomarudin, R., Kartadinata, N., Laiolo, M., Massimetti, F., & Gaebler, P. (2019). Precursors and processes culminating in the Anak Krakatau December 2018 sector collapse and tsunami. Nature Communications(in revision).

  • Wang, X., & Liu, P.-F. (2006). An analysis of 2004 Sumatra earthquake fault plane mechanisms and Indian Ocean tsunami. Journal of Hydraulic Research, 44, 147–154.

    Google Scholar 

  • Yavari-Ramshe, S., & Ataie-Ashtiani, B. (2016). Numerical modeling of subaerial and submarine landslide-generated tsunami waves-recent advances and future challenges. Landslides, 13, 1325–1368.

    Google Scholar 

Download references

Acknowledgements

We thank Abdul Muhari, from the Directorate of Sustainable Utilization of Coastal Zone and Small Islands, Ministry of Marine Affairs and Fisheries, Indonesia, for providing us with the tide gauges data and the KKP field survey data, and Gegar Prasetya, for providing us the BMKG field survey data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Paris.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paris, A., Heinrich, P., Paris, R. et al. The December 22, 2018 Anak Krakatau, Indonesia, Landslide and Tsunami: Preliminary Modeling Results. Pure Appl. Geophys. 177, 571–590 (2020). https://doi.org/10.1007/s00024-019-02394-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02394-y

Keywords

Navigation