Skip to main content
Log in

4-D Imaging of Subsurface Changes with Coda Waves: Numerical Studies of 3-D Combined Sensitivity Kernels and Applications to the \(M_{\mathrm{w}}\) 7.9, 2008 Wenchuan Earthquake

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

In the context of seismic monitoring, recent studies made successful use of seismic coda waves to image the lateral extent of medium changes. Locating the depth of the changes, however, remains a challenge. We use multiply scattered body- and surface-wave 3-D combined sensitivity kernels to address this problem. We show that we can locate velocity perturbations at depth with numerical data from elastic wave-field simulations in 3-D heterogeneous media. This procedure is then applied to assess the extent of the crustal damage due to the \(M_{\mathrm{w}}\) 7.9, 2008 Wenchuan earthquake. We discuss the potential and limitations of our approach to retrieve the depth information of temporal changes occurring in heterogeneous structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bettinelli, P., Avouac, J. P., Flouzat, M., Bollinger, L., Ramillien, G., Rajaure, S., et al. (2008). Seasonal variations of seismicity and geodetic strain in the Himalaya induced by surface hydrology. Earth and Planetary Science Letters, 266, 332–344.

    Article  Google Scholar 

  • Burchfiel, B. C., Royden, L. H., van der Hilst, R. D., Chen, Z., King, R. W., Li, C., et al. (2008). A geological and geophysical context for the Wenchuan earthquake of 12 May 2008, Sichuan, People’s Republic of China. GSA Today, 18(7), 5.

    Article  Google Scholar 

  • Carcione, J. M., & Tinivella, U. (2001). The seismic response to overpressure: A modelling study based on laboratory, well and seismic data. Geophysical Prospecting, 49, 523–539.

    Article  Google Scholar 

  • Chen, J. H., Froment, B., Liu, Q. Y., & Campillo, M. (2010). Distribution of seismic wave speed changes associated with the 12 May 2008 \(M_{\rm w}\) 7.9 Wenchuan earthquake. Geophysical Research Letters, 37(L18302), 1–4.

    Google Scholar 

  • Chen, J. H., Liu, Q. Y., Li, S. C., Guo, B., Wang, J., & Qi, S. H. (2009). Seismotectonic study by relocation of the Wenchuan M(S)8.0 earthquake sequence. Chinese Journal of Geophysics-Chinese Edition, 52(2), 390–397.

    Article  Google Scholar 

  • Dvorkin, J., Mavko, G., & Nur, A. (1999). Overpressure detection from compressional- and shear-wave data. Geophysical Research Letters, 26(22), 3417–3420.

    Article  Google Scholar 

  • Fielding, E. J., Sladen, A., Li, Z., Avouac, J.-P., Bürgmann, R., & Ryder, I. (2013). Kinematic fault slip evolution source models of the 2008 M7. 9 Wenchuan earthquake in China from SAR interferometry, GPS and teleseismic analysis and implications for Longmen Shan tectonics. Geophysical journal international, 194(2), 1138–1166.

    Article  Google Scholar 

  • Froment, B. (2011). Utilisation du bruit sismique ambiant dans le suivi temporel de structures géologiques. PhD thesis, Université de Grenoble.

  • Froment, B., Campillo, M., Chen, J. H., & Liu, Q. Y. (2013). Deformation at depth associated with the May 12, 2008 \(M_{\rm w}\) 7.9 Wenchuan earthquake from seismic ambient noise monitoring. Geophysical Research Letters, 40, 78–82.

    Article  Google Scholar 

  • Grêt, A., Snieder, R., Aster, R. C., & Kyle, P. R. (2005). Monitoring rapid temporal change in a volcano with coda wave interferometry. Geophysical Research Letters, 32(6), L06304.

    Article  Google Scholar 

  • Hansen, P. C. (1992). Analysis of discrete ill-posed problems by means of the L-curve. SIAM Review, 34(4), 561–580.

    Article  Google Scholar 

  • Hennino, R., Tregoures, N., Shapiro, N. M., Margerin, L., Campillo, M., van Tiggelen, B. A., et al. (2001). Observation of equipartition of seismic waves. Physical Review Letters, 86(15), 3447–3450.

    Article  Google Scholar 

  • Hillers, G., Ben-Zion, Y., Landes, M., & Campillo, M. (2013). Interaction of microseisms with crustal heterogeneity: A case study from the San Jacinto fault zone area. Geochemistry, Geophysics, Geosystems, 14(7), 2182–2197.

    Article  Google Scholar 

  • Hillers, G., Husen, S., Obermann, A., Planès, T., Campillo, M., & Larose, E. (2015). Noise-based monitoring and imaging of aseismic transient deformation induced by the 2006 Basel reservoir stimulation. Geophysics, 80(4), KS51–KS68.

    Article  Google Scholar 

  • Kanu, C., & Snieder, R. (2015a). Numerical computation of the sensitivity kernel for monitoring weak changes with multiply scattered acoustic waves. Geophysical Journal International, 203(3), 1923–1936.

    Article  Google Scholar 

  • Kanu, C., & Snieder, R. (2015b). Time-lapse imaging of a localized weak change with multiply scattered waves using numerical-based sensitivity kernel. Journal of Geophysical Research: Solid Earth, 120(8), 5595–5605.

    Google Scholar 

  • Komatitsch, D., & Tromp, J. (2002). Spectral-element simulations of global seismic wave propagation II. Three-dimensional models, oceans, rotation and self-gravitation. Geophysical Journal International, 150(1), 303–318.

    Article  Google Scholar 

  • Larose, E., Obermann, A., Digulescu, A., Planès, T., Chaix, J. F., Mazerolle, F., et al. (2015). Locating and characterizing a crack in concrete with LOCADIFF: A four-point bending test. The Journal of the Acoustical Society of America, 138(1), 232–241.

    Article  Google Scholar 

  • Larose, E., Planès, T., Rossetto, V., & Margerin, L. (2010). Locating a small change in a multiple scattering environment. Applied Physics Letters, 96(204101), 1–3.

    Google Scholar 

  • Lee, W. S., Sato, H., & Lee, K. (2003). Estimation of S-wave scattering coefficient in the mantle from envelope characteristics before and after the ScS arrival. Geophysical Research Letters, 30(24), 2248–2252.

    Google Scholar 

  • Lesage, P., Reyes-Dávila, G., & Arámbula-Mendoza, R. (2014). Large tectonic earthquakes induce sharp temporary decreases in seismic velocity in Volcán de Colima, Mexico. Journal of Geophysical Research: Solid Earth, 119(5), 4360–4376.

    Google Scholar 

  • Lobkis, O. I., & Weaver, R. L. (2003). Coda-wave interferometry in finite solids: Recovery of P-to-S conversion rates in an elastodynamic billiard. Physical Review Letters, 90(254302), 1–4.

    Google Scholar 

  • Margerin, L., Campillo, M., Shapiro, N. M., & van Tiggelen, B. (1999). Residence time of diffuse waves in the crust and the physical interpretation of coda Q. Application to seismograms recorded in Mexico. Geophysical Journal International, 138, 343–352.

    Article  Google Scholar 

  • Margerin, L., Planès, T., Mayor, J., & Calvet, M. (2016). Sensitivity kernels for coda-wave interferometry and scattering tomography: Theory and numerical evaluation in two-dimensional anisotropically scattering media. Geophysical Journal International, 204(1), 650–666.

    Article  Google Scholar 

  • Meunier, J., Huguet, F., & Meynier, P. (2001). Reservoir monitoring using permanent sources and vertical receiver antennae The Céré-la-Ronde case study. The Leading Edge, 20(6), 622–629.

    Article  Google Scholar 

  • Nakahara, H., & Carcolé, E. (2010). Maximum-likelihood method for estimating coda Q and the Nakagami-m parameter. Bulletin of the Seismological Society of America, 100(6), 3174–3182.

    Article  Google Scholar 

  • Nakata, N., & Beroza, G. C. (2015). Stochastic characterization of mesoscale seismic velocity heterogeneity in Long Beach, California. Geophysical Journal International, 203(3), 2049–2054.

    Article  Google Scholar 

  • Obermann, A., Froment, B., Campillo, M., Larose, E., Planès, T., Valette, B., et al. (2014). Seismic noise correlations to image structural and mechanical changes associated with the \(M_{\rm w}\) 7.9 2008 Wenchuan earthquake. Journal of Geophysical Research, 119(4), 3155–3168.

    Google Scholar 

  • Obermann, A., Kraft, T., Larose, E., Wiemer, S., et al. (2015). Potential of ambient seismic noise techniques to monitor the St. Gallen geothermal site (Switzerland). Journal of Geophysical Research, 120(6), 4301–4316.

    Google Scholar 

  • Obermann, A., Larose, E., Margerin, L., & Rossetto, V. (2014b). Measuring the scattering mean free path of Rayleigh waves on a volcano from spatial phase decoherence. Geophysical Journal International, 197, 435–442.

    Article  Google Scholar 

  • Obermann, A., Planès, T., Hadziioannou, C., & Campillo, M. (2016). Lapse-time-dependent coda-wave depth sensitivity to local velocity perturbations in 3-D heterogeneous elastic media. Geophysical Journal International, 207(1), 59–66.

    Article  Google Scholar 

  • Obermann, A., Planès, T., Larose, E., & Campillo, M. (2013a). Imaging pre- and co-eruptive structural and mechanical changes on a volcano with ambient seismic noise. Journal of Geophysical Research, 118(12), 6285–6294.

    Google Scholar 

  • Obermann, A., Planès, T., Larose, E., Sens-Schönfelder, C., & Campillo, M. (2013b). Depth sensitivity of seismic coda waves to velocity perturbations in an elastic heterogeneous medium. Geophysical Journal International, 194(1), 372–382.

    Article  Google Scholar 

  • Paasschens, J. C. J. (1997). Solution of the time-dependent Boltzmann equation. Physical Review E, 56(1), 1135.

    Article  Google Scholar 

  • Pacheco, C., & Snieder, R. (2005). Time-lapse travel time change of multiply scattered acoustic waves. The Journal of the Acoustical Society of America, 118, 1300–1310.

    Article  Google Scholar 

  • Peng, Z., & Ben-Zion, Y. (2006). Temporal changes of shallow seismic velocity around the Karadere–Düzce branch of the north Anatolian fault and strong ground motion. Pure and Applied Geophysics, 163(2–3), 567–600.

    Article  Google Scholar 

  • Perton, M., Sánchez-Sesma, F., Rodríguez-Castellanos, A., Campillo, M., & Weaver, R. (2009). Two perspectives on equipartition in diffuse elastic fields in three dimensions. The Journal of the Acoustical Society of America, 126(3), 1125–1130.

    Article  Google Scholar 

  • Peter, D., Komatitsch, D., Luo, Y., Martin, R., Le Goff, N., Casarotti, E., et al. (2011). Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophysical Journal International, 186(2), 721–739.

    Article  Google Scholar 

  • Planès, T. (2013). Imagerie de changements locaux en régime de diffusion multiple. PhD thesis, Université de Grenoble.

  • Planès, T., Larose, E., Margerin, L., Rossetto, V., & Sens-Schönfelder, C. (2014). Decorrelation and phase-shift of coda waves induced by local changes: Multiple scattering approach and numerical validation. Waves in Random and Complex Media, 2(24), 1–27.

    Google Scholar 

  • Planès, T., Larose, E., Rossetto, V., & Margerin, L. (2015). Imaging multiple local changes in heterogeneous media with diffuse waves. The Journal of the Acoustical Society of America, 2(137), 660–667.

    Article  Google Scholar 

  • Poupinet, G., Ellsworth, W. L., & Frechet, J. (1984). Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras fault. California. Journal of Geophysical Research, 89(B7), 5719–5731.

    Article  Google Scholar 

  • Poupinet, G., Ratdomopurbo, A., & Coutant, O. (1996). On the use of earthquake multiplets to study fractures and the temporal evolution of an active volcano. Annals of Geophysics, 39, 253–264.

    Google Scholar 

  • Rivet, D., Campillo, M., Shapiro, N. M., Cruz-Atienza, V., Radiguet, M., Cotte, N., et al. (2011). Seismic evidence of nonlinear crustal deformation during a large slow slip event in Mexico. Geophysical Research Letters, 38(L08308), 1–5.

    Google Scholar 

  • Rossetto, V., Margerin, L., Planès, T., & Larose, E. (2011). Locating a weak change using diffuse waves: Theoretical approach and inversion procedure. Journal of Applied Physics, 109(034903), 1–11.

    Google Scholar 

  • Roux, P., & Ben-Zion, Y. (2014). Monitoring fault zone environments with correlations of earthquake waveforms. Geophysical Journal International, 196(2), 1073–1081.

    Article  Google Scholar 

  • Sanchez, P., Obermann, A., Schimmel, M., et al. (2018). Detecting and locating precursory signals during the 2011 El Hierro, Canary Islands, submarine eruption. Geophysical Research Letters. https://doi.org/10.1029/2018GL079550.

    Google Scholar 

  • Sato, H., & Nohechi, M. (2001). Envelope formation of long-period Rayleigh waves in vertical component seismograms: Single isotropic scattering model. Journal of Geophysical Research: Solid Earth, 106(B4), 6589–6594.

    Article  Google Scholar 

  • Schaff, D. P., & Beroza, G. C. (2004). Coseismic and postseismic velocity changes measured by repeating earthquakes. Journal of Geophysical Research, 109(B10302), 1–14.

    Google Scholar 

  • Sens-Schönfelder, C., & Wegler, U. (2006a). Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano. Indonesia. Geophysical Research Letters, 33(21), L21302.

    Article  Google Scholar 

  • Sens-Schönfelder, C., & Wegler, U. (2006b). Radiative transfer theory for estimation of the seismic moment. Geophysical Journal International, 167(3), 1363–1372.

    Article  Google Scholar 

  • Takagi, R., Okada, T., Nakahara, H., Umino, N., & Hasegawa, A. (2012). Coseismic velocity change in and around the focal region of the 2008 Iwate-Miyagi Nairiku earthquake. Journal of Geophysical Research, 117(B06315), 1–19.

    Google Scholar 

  • Tarantola, A., & Valette, B. (1982). Generalized nonlinear inverse problems solved using the least squares criterion. Reviews of Geophysics, 20(2), 219–232.

    Article  Google Scholar 

  • Tregourès, N. P., & van Tiggelen, B. A. (2002). Generalized diffusion equation for multiply scattered elastic waves. Waves in Random Media, 12, 21–38.

    Article  Google Scholar 

  • Ugalde, A., Villaseñor, A., Gaite, B., Casquero, S., Martí, D., Calahorrano, A., et al. (2013). Passive seismic monitoring of an experimental CO\(_2\) geological storage site in Hontomín (Northern Spain). Seismological Research Letters, 84(1), 75–84.

    Article  Google Scholar 

  • Weaver, R. L. (1982). On diffuse waves in solid media. The Journal of the Acoustical Society of America, 71, 1608–1609.

    Article  Google Scholar 

  • Weaver, R. L. (1985). Diffuse elastic waves at a free surface. The Journal of the Acoustical Society of America, 78, 131–136.

    Article  Google Scholar 

  • Weaver, R. L., Hadziioannou, C., Larose, E., & Campillo, M. (2011). On the precision of noise correlation interferometry. Geophysical Journal International, 185(3), 1384–1392.

    Article  Google Scholar 

  • Wu, C., Peng, Z., & Ben-Zion, Y. (2009). Non-linearity and temporal changes of fault zone site response associated with strong ground motion. Geophysical Journal International, 176(1), 265–278.

    Article  Google Scholar 

  • Xu, X. W., Wen, X. Z., Yu, G. H., Chen, G. H., Klinger, Y., Hubbard, J., et al. (2009). Coseismic reverse- and oblique-slip surface faulting generated by the 2008 \(M_{\rm w}\) 7.9 Wenchuan earthquake, China. Geology, 37(6), 515–518.

    Article  Google Scholar 

  • Zhang, P. Z., Wen, X. Z., Shen, Z. K., & Chen, J. H. (2010). Oblique, high-angle, listric-reverse faulting and associated development of strain: The Wenchuan earthquake of May 12, 2008, Sichuan, China. Annual Review of Earth and Planetary Sciences, 38, 353–382.

    Article  Google Scholar 

  • Zhang, Y., Planès, T., Larose, E., Obermann, A., Rospars, C., & Moreau, G. (2016). Diffuse ultrasound monitoring of stress and damage development on a 15-ton concrete beam. The Journal of the Acoustical Society of America, 139(4), 1691–1701.

    Article  Google Scholar 

Download references

Acknowledgements

The research leading to these results received funding from the European Community Seventh Framework Programme under grant agreement no. 608553 (Image) and the Swiss Federal Office of Energy with the project GEOBEST. The authors also want to thank the Leibniz-Rechenzentrum (LRZ) and Jens Oeser for access and support in using the SUPERMUC system at the LRZ. The work has benefited from discussions within the European Cooperation in Science and Technology (COST) action ES1401-TIDES, supported by COST. MC acknowledges the support of the European Research Council (ERC) under agreement no. 742335 (F-Image). The authors wish to thank Gregor Hillers and an anonymous reviewer for their very constructive and detailed comments that helped to significantly improve the manuscript, as well as the editor Yehuda Ben-Zion for his helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne Obermann.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obermann, A., Planès, T., Larose, E. et al. 4-D Imaging of Subsurface Changes with Coda Waves: Numerical Studies of 3-D Combined Sensitivity Kernels and Applications to the \(M_{\mathrm{w}}\) 7.9, 2008 Wenchuan Earthquake. Pure Appl. Geophys. 176, 1243–1254 (2019). https://doi.org/10.1007/s00024-018-2014-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2014-7

Keywords

Navigation