Skip to main content
Log in

Role of the Oceanic Vertical Thermal Structure in the Modulation of Heavy Precipitations Over the Ligurian Sea

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The importance of the upper ocean thermal vertical structure (mixed-layer depth and stratification) in the control of the precipitation during a heavy-rain-producing mesoscale convective system is investigated by means of numerical simulations. In particular, the fully compressible, nonhydrostatic Euler equations for the atmosphere and the hydrostatic Boussinesq equations for the ocean are numerically integrated to study the effect of the ocean–atmosphere coupling both with realistic initial and boundary conditions and with simpler, analytical vertical temperature profile forcing. It is found that the action of the winds associated with the synoptic system, in which the heavy precipitation event is embedded, can entrain deep and cold water in the oceanic mixed layer, generating surface cooling. In the case of a shallow mixed layer and strongly stratified water column, this decrease in sea surface temperature can significantly reduce the air column instability and, thus, the total amount of precipitation produced.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Beckmann, A., & Haidvogel, D. B. (1993). Numerical simulation of flow around a tall isolated seamount. Part I: Problem formulation and model accuracy. Journal of Physical Oceanography, 23, 1736–1753. https://doi.org/10.1175/1520-0485(1993)023%3c1736:NSOFAA%3e2.0.CO;2.

    Article  Google Scholar 

  • Beljaars, A. C. M. (1995). The parameterization of surface fluxes in large-scale models under free convection. Quarterly Journal of the Royal Meteorological Society, 121, 255–270.

    Article  Google Scholar 

  • Berthou, S., Mailler, S., Drobinski, P., Arsouze, T., Bastin, S., Béranger, K., et al. (2015). Sensitivity of an intense rain event between atmosphere-only and atmosphere-ocean regional coupled models: 19 September 1996. Quarterly Journal of the Royal Meteorological Society, 141, 258–271. https://doi.org/10.1002/qj.2355.

    Article  Google Scholar 

  • Buzzi, A., Davolio, S., Malguzzi, P., Drofa, O., & Mastrangelo, D. (2014). Heavy rainfall episodes over Liguria in autumn 2011: Numerical forecasting experiments. Natural Hazards and Earth System Sciences, 14(5), 1325–1340. https://doi.org/10.5194/nhess-14-1325-2014.

    Article  Google Scholar 

  • Carniel, S., Benetazzo, A., Bonaldo, D., Falcieri, F. M., Miglietta, M. M., Ricchi, A., et al. (2016). Scratching beneath the surface while coupling atmosphere, ocean and waves: Analysis of a dense water formation event. Ocean Modelling, 101, 101–112. https://doi.org/10.1016/j.ocemod.2016.03.007.

    Article  Google Scholar 

  • Cassola, F., Ferrari, F., & Mazzino, A. (2015). Numerical simulations of Mediterranean heavy precipitation events with the WRF model: A verification exercise using different approaches. Atmospheric Research, 164–165, 210–225. https://doi.org/10.1016/j.atmosres.2015.05.010.

    Article  Google Scholar 

  • Cassola, F., Ferrari, F., Mazzino, A., & Miglietta, M. M. (2016). The role of the sea in the flash floods events over Liguria (northwestern Italy). Geophysical Research Letters, 43, 3534–3542. https://doi.org/10.1002/2016GL068265.

    Article  Google Scholar 

  • Chou, M. D., & Suarez, M. J. (1999). A solar radiation parameterization for atmospheric studies. NASA Technical Memorandum, 104606, 15.

    Google Scholar 

  • Chou, M. D., Suarez, M. J., Liang, X. Z., & Yan, M. M. H. (2001). A thermal infrared radiation parameterization for atmospheric studies. NASA Technical Memorandum, 104606, 19.

    Google Scholar 

  • De Zolt, S., Lionello, P., Nuhu, A., & Tomasin, A. (2006). The disastrous storm of 4 November 1966 on Italy. Natural Hazards and Earth System Science, 6, 861–879. https://doi.org/10.5194/nhess-6-861-2006.

    Article  Google Scholar 

  • Debreu, L., Marchesiello, P., Penven, P., & Cambon, G. (2012). Two-way nesting in split-explicit ocean models: Algorithms, implementation and validation. Ocean Modelling, 49, 1–21.

    Article  Google Scholar 

  • D’Ortenzio, F., Iudicone, D., de Boyer, Montegut C., Testor, P., Antoine, D., Marullo, S., et al. (2005). Seasonal variability of the mixed layer depth in the Mediterranean Sea as derived from in situ profiles. Geophysical Research Letters, 32, L12605. https://doi.org/10.1029/2005GL022463.

    Article  Google Scholar 

  • Ducrocq, V., Braud, I., Davolio, S., Ferretti, R., Flamant, C., Jansa, A., et al. (2014). HyMeX-SOP1: The field campaign dedicated to heavy precipitation and flash flooding in the northwestern Mediterranean. Bulletin of the American Meteorological Society, 95, 1083–1100. https://doi.org/10.1175/BAMS-D-12-00244.2.

    Article  Google Scholar 

  • Dudhia, J. (1996). A multi-layer soil temperature model for MM5. The sixth PSU/NCAR Mesoscale Model users’ workshop.

  • Duffourg, F., Nuissier, O., Ducrocq, V., Flamant, C., Chazette, P., Delanoë, J., et al. (2016). Offshore deep convection initiation and maintenance during the HyMeX IOP 16a heavy precipitation event. Quarterly Journal of the Royal Meteorological Society, 142, 259–274. https://doi.org/10.1002/qj.2725.

    Article  Google Scholar 

  • Faccini, F., Luino, F., Paliaga, G., Sacchini, A., & Turconi, L. (2015). Yet another disaster flood of the Bisagno stream in Genoa (Liguria, Italy): October the 9th–10th 2014 event. Rendiconti Online della Società Geologica Italiana, 35, 128–131. https://doi.org/10.3301/ROL.2015.81.

    Article  Google Scholar 

  • Fairall, C. W., Bradley, E. F., Hare, J. E., Grachev, A. A., & Edson, J. B. (2003). Bulk parameterization of air-sea fluxes: Updates and verification for the COARE algorithm. Journal of Climate, 16, 571–591. https://doi.org/10.1175/1520-0442(2003)016%3c0571:BPOASF%3e2.0.CO;2.

    Article  Google Scholar 

  • Fiori, E., Comellas, A., Molini, L., Rebora, N., Siccardi, F., Gochis, D. J., et al. (2014). Analysis and hindcast simulations of an extreme rainfall event in the Mediterranean area: The Genoa 2011 case. Atmospheric Research, 138, 13–29.

    Article  Google Scholar 

  • Fiori, E., Ferraris, L., Molini, L., Siccardi, F., Kranzlmueller, D., & Parodi, A. (2017). Triggering and evolution of a deep convective system in the Mediterranean Sea: Modelling and observations at a very fine scale. Quarterly Journal of the Royal Meteorological Society, 143, 927–941. https://doi.org/10.1002/qj.2977.

    Article  Google Scholar 

  • Flamant, C. (2003). Alpine lee cyclongenesis influence on air-sea heat exchanges and marine atmospheric boundary layer thermodynamics over the western Mediterranean during a Tramontane/Mistral event. Journal of Geophysical Research: Oceans. https://doi.org/10.1029/2001JC001040.

    Article  Google Scholar 

  • Gaume, E., Bain, V., Bernardara, P., Newinger, O., Barbuc, M., Bateman, A., et al. (2009). A compilation of data on European flash floods. Journal of Hydrology, 367, 70–78.

    Article  Google Scholar 

  • Hong, S. Y., & Lim, J. O. J. (2006). The WRF single moment 6-class microphysics scheme (WSM6). Journal of the Korean Meteorological Society, 42, 129–151.

    Google Scholar 

  • Houpert, L., Testor, P., Durrieu de Madron, X., Somot, S., D’Ortenzio, F., Estournel, C., et al. (2015). Seasonal cycle of the mixed layer, the seasonal thermocline and the upper-ocean heat storage rate in the Mediterranean Sea derived from observations. Progress in Oceanography, 132, 333–352. https://doi.org/10.1016/j.pocean.2014.11.004.

    Article  Google Scholar 

  • Jackett, D. R., & McDougall, T. (1995). Minimal adjustment of hydrographic profiles to achieve static stability. Journal of Atmospheric and Oceanic Technology, 12, 381–389.

    Article  Google Scholar 

  • Jacob, D., Petersen, J., Eggert, B., Alias, A., Christensen, O. B., Bouwer, L. M., et al. (2014). Euro-CORDEX: New high-resolution climate change projections for European impact research. Regional Environmental Change, 14, 563–578. https://doi.org/10.1007/s10113-013-0499-2.

    Article  Google Scholar 

  • Juza, M., Mourre, B., Renault, L., Gómara, S., Sebastián, K., Lora, S., et al. (2016). SOCIB operational ocean forecasting system and multi-platform validation in the Western Mediterranean Sea. Journal of Operational Oceanography, 9, s155–s166.

    Article  Google Scholar 

  • Lagasio, M., Parodi, A., Procopio, R., Rachidi, F., & Fiori, E. (2017). Lightning potential index performances in multimicrophysical cloud-resolving simulations of a back-building mesoscale convective system: The Genoa 2014 event. Journal of Geophysical Research: Atmospheres, 122(8), 4238–4257. https://doi.org/10.1002/2016JD026115.

    Article  Google Scholar 

  • Large, W. G., McWilliams, J. C., & Doney, S. C. (1994). Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parametrization. Reviews of Geophysics, 32, 363–403.

    Article  Google Scholar 

  • Lebeaupin, C., Ducrocq, V., & Giordani, H. (2006). Sensitivity of torrential rain events to the sea surface temperature based on high-resolution numerical forecasts. Journal of Geophysical Research, 111, D12110. https://doi.org/10.1029/2005JD006541.

    Article  Google Scholar 

  • Lebeaupin Brossier, C., & Drobinski, P. (2009). Numerical high resolution air-sea coupling over the Gulf of Lions during two Tramontane/Mistral events. Journal of Geophysical Research, 114, D10110. https://doi.org/10.1029/2008JD011601.

    Article  Google Scholar 

  • Lebeaupin Brossier, C., Drobinski, P., Béranger, K., Bastin, S., & Orain, F. (2013). Ocean memory effect on the dynamics of coastal heavy precipitation preceded by a mistral event in the northwestern Mediterranean. Quarterly Journal of the Royal Meteorological Society, 139, 1583–1597. https://doi.org/10.1007/s10236-011-0502-8.

    Article  Google Scholar 

  • Lebeaupin Brossier, C., Arsouze, T., Béranger, K., Bouin, M. N., Bresson, E., Ducrocq, V., et al. (2014). Ocean mixed layer responses to intense meteorological events during HyMeX-SOP1 from a high-resolution ocean simulation. Ocean Modelling, 84, 84–103. https://doi.org/10.1016/j.ocemod.2014.09.009.

    Article  Google Scholar 

  • Lemarié, F., Debreu, L., Shchepetkin, A. F., & McWilliams, J. C. (2012). On the stability and accuracy of the harmonic and biharmonic isoneutral mixing operators in ocean models. Ocean Modelling, 52–53, 9–35. https://doi.org/10.1016/j.ocemod.2012.04.007.

    Article  Google Scholar 

  • Lionello, P., Martucci, G., & Zampieri, M. (2003). Implementation of a coupled atmosphere-wave-ocean model in the Mediterranean sea: Sensitivity of the short time scale evolution to the air-sea coupling mechanisms. Journal of Atmospheric & Ocean Science, 9(1–2), 65–95. https://doi.org/10.1080/1023673031000151421.

    Article  Google Scholar 

  • Llasat, M. C., Llasat-Botija, M., Petrucci, O., Pasqua, A. A., Rosselló, J., Vinet, F., et al. (2013). Towards a database on societal impact of Mediterranean floods within the framework of the HYMEX project. Natural Hazards and Earth System Sciences, 13, 1337–1350. https://doi.org/10.5194/nhess-13-1337-2013.

    Article  Google Scholar 

  • Marchesiello, P., Debreu, L., & Couvelard, X. (2009). Spurious diapycnal mixing in terrain-following coordinate models: The problem and a solution. Ocean Modelling, 26, 156–169. https://doi.org/10.1016/j.ocemod.2008.09.004.

    Article  Google Scholar 

  • Mei, W., Xie, S. P., Primeau, F., McWilliams, J. C., & Pasquero, C. (2015). Northwestern Pacific typhoon intensity controlled by changes in ocean temperatures. Science Advances, 1(4), e1500014. https://doi.org/10.1126/sciadv.1500014.

    Article  Google Scholar 

  • Meroni, A. N., Parodi, A., & Pasquero, C. (2018). Role of SST patterns on surface wind modulation of a heavy midlatitude precipitation event. Journal of Geophysical Research: Atmospheres, 123, 9081–9096. https://doi.org/10.1029/2018JD028276.

    Article  Google Scholar 

  • Miglietta, M. M., Mazon, J., Motola, V., & Pasini, A. (2017). Effect of a positive sea surface temperature anomaly on a Mediterranean tornadic supercell. Scientific Reports, 7, 12828. https://doi.org/10.1038/s41598-017-13170-0.

    Article  Google Scholar 

  • Millán, M. M., Estrela, J., & Caselles, V. (1995). Torrential precipitations on the Spanish east coast: The role of the Mediterranean sea-surface temperature. Atmospheric Research, 36, 1–16.

    Article  Google Scholar 

  • Millot, C., & Taupier-Letage, I. (2005). Circulation in the Mediterranean Sea. In: Saliot A (ed) The Mediterranean Sea, vol. 5, Springer, Berlin, pp. 29–66, https://doi.org/10.1007/b107143.

    Chapter  Google Scholar 

  • Miyamoto, Y., Bryan, G. H., & Rotunno, R. (2017). An analytical model of maximum potential intensity for tropical cyclones incorporating the effect of ocean mixing. Geophysical Research Letters, 44, 5826–5835. https://doi.org/10.1002/2017GL073670.

    Article  Google Scholar 

  • Mlawer, E., Steven, J., Taubman, J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogenous atmospheres: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102, 16663–16682.

    Article  Google Scholar 

  • Nakanishi, M., & Niino, H. (2006). An improved Mellor–Yamada level 3 model: Its numerical stability and application to a regional prediction of advecting fog. Boundary-Layer Meteorology, 119, 397–407.

    Article  Google Scholar 

  • Nakanishi, M., & Niino, H. (2009). Development of an improved turbulence closure model for the atmospheric boundary layer. Journal of the Meteorological Society of Japan, 87, 895–912.

    Article  Google Scholar 

  • Nuissier, O., Ducrocq, V., Ricard, D., Lebeaupin, C., & Anquetin, S. (2008). A numerical study of three catastrophic precipitating events over southern France. I: Numerical framework and synoptic ingredients. Quarterly Journal of the Royal Meteorological Society, 134, 111–130. https://doi.org/10.1002/qj.200.

    Article  Google Scholar 

  • Oddo, P., Adani, M., Pinardi, N., Fratianni, C., Tonani, M., & Pettenuzzo, D. (2009). A nested Atlantic-Mediterranean Sea general circulation model for operational forecasting. Ocean Science, 5, 461–473. https://doi.org/10.5194/os-5-461-2009.

    Article  Google Scholar 

  • Orlanski, I. (1976). A simple boundary condition for unbounded hyperbolic flows. Journal of Computer Science, 21(3), 251–269.

    Google Scholar 

  • Pastor, F., Estrela, M. J., narrocha, D. P., & Millán, M. M. (2001). Torrential rains on the Spanish Mediterranean coast: Modeling the effects of the sea surface temperature. Journal of Applied Meteorology, 40, 1180–1195.

    Article  Google Scholar 

  • Penven, P., Debreu, L., Marchesiello, P., & McWilliams, J. C. (2006). Evaluation and application of the ROMS 1-way embedding procedure to the central California upwelling system. Ocean Modelling, 12, 157–187.

    Article  Google Scholar 

  • Raymond, W. H., & Kuo, H. L. (1984). A radiation boundary condition for multi-dimensional flows. Quarterly Journal of the Royal Meteorological Society, 110, 535–551.

    Article  Google Scholar 

  • Rebora, N., Molini, L., Casella, E., Comellas, A., Fiori, E., Pignone, F., et al. (2013). Extreme rainfall in the Mediterranean: What can we learn from observations? Journal of Hydrometeorology, 14, 906–922. https://doi.org/10.1175/JHM-D-12-083.1.

    Article  Google Scholar 

  • Ricchi, A., Miglietta, M. M., Falco, P. P., Benetazzo, A., Bonaldo, D., Bergamasco, A., et al. (2016). On the use of a coupled-ocean-atmosphere-wave model during an extreme cold air outbreak over the Adriatic Sea. Atmospheric Research, 172–173, 48–65. https://doi.org/10.1016/j.atmosres.2015.12.023.

    Article  Google Scholar 

  • Ricchi, A., Miglietta, M. M., Barbariol, F., Benetazzo, A., Bergamasco, A., Bonaldo, D., et al. (2017). Sensitivity of a Mediterranean tropical-like cyclone to different model configurations and coupling strategies. Atmosphere, 8, 92. https://doi.org/10.3390/atmos8050092.

    Article  Google Scholar 

  • Sandwell, D. T., & Smith, W. H. F. (1997). Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research, 102, 10039–10054. https://doi.org/10.1029/96JB03223.

    Article  Google Scholar 

  • Schade, L. R., & Emanuel, K. A. (1999). The ocean’s effect on the intensity of tropical cyclones: Results from a simple coupled atmosphere-ocean model. Journal of the Atmospheric Sciences, 56, 642–651.

    Article  Google Scholar 

  • Schumacher, R. S., & Johnson, R. H. (2005). Organization and environmental properties of extreme-rain-producing mesoscale convective systems. Monthly Weather Review, 133, 961–976.

    Article  Google Scholar 

  • Schumacher, R. S., & Johnson, R. H. (2008). Mesoscale processes contributing to extreme rainfall in a midlatitude warm-season flash-flood. Monthly Weather Review, 136, 3964–3986.

    Article  Google Scholar 

  • Schumacher, R. S., & Johnson, R. H. (2009). Quasi-stationary, extreme-rain-producing convective systems associated with midlevel cyclonic circulations. Weather and Forecasting, 24, 555–574.

    Article  Google Scholar 

  • Shchepetkin, A. F. (2015). An adaptive, Courant-number-dependent implicit scheme for vertical advection in oceanic modeling. Ocean Modelling, 91, 38–69. https://doi.org/10.1016/j.ocemod.2015.03.006.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (1998). Quasi-monotone advection schemes based on explicit locally adaptive dissipation. Monthly Weather Review, 126, 1541–1580. https://doi.org/10.1175/1520-0493(1998)126%3c1541:QMASBO%3e2.0.CO;2.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (2003). A method for computing horizontal pressure-gradient force in an oceanic model with a nonaligned vertical coordinate. Journal of Geophysical Research: Oceans, 108, 1. https://doi.org/10.1029/2001JC001047.

    Article  Google Scholar 

  • Shchepetkin, A. F., & McWilliams, J. C. (2009). Correction and commentary for “Ocean forecasting in terrain-following coordinates: Formulation and skill assessment of the regional ocean modeling system” by Haidvogel et al., J. Comp. Phys. 227:3595–3624. Journal of Computational Physics, 228, 3595–3624. https://doi.org/10.1016/j.jcp.2009.09.002.

    Article  Google Scholar 

  • Silvestro, F., Rebora, N., Giannoni, F., Cavallo, A., & Ferraris, L. (2016). The flash flood of the Bisagno creek on 9th October 2014: an “unfortunate” combination of spatial and temporal scales. Journal of Hydrology, 541, 50–62. https://doi.org/10.1016/j.jhydrol.2015.08.004.

    Article  Google Scholar 

  • Simmons, A. J., Burridge, D. M., Jarraud, M., Girard, C., & Wergen, W. (1989). The ECMWF medium-range prediction models development of the numerical formulations and the impact of increased resolution. Meteorology and Atmospheric Physics, 40, 28–60.

    Article  Google Scholar 

  • Skamarock, WC., Klemp, JB., Dudhia, J., Gill, DO., Barker, DM., Duda, M., et al. (2008). A description of the advanced research WRF version 3. NCAR Tech Note NCAR/TN-475+STR p. https://doi.org/10.5065/D68S4MVH.

  • Smagorinsky, J. (1963). General circulation experiments with the primitive equations: I. The basic equations. Monthly Weather Review, 91, 99–164.

    Article  Google Scholar 

  • Small, R. J., deSzoeke, S. P., Xie, S. P., O’Neilland, H., Seo, L., Song, Q., et al. (2008). Air-sea interaction over ocean fronts and eddies. Dynamics of Atmospheres and Oceans, 45, 274–319. https://doi.org/10.1016/j.dynatmoce.2008.01.001.

    Article  Google Scholar 

  • Small, R. J., Campbell, T., Teixeira, J., Carniel, S., Smith, T. A., Dykes, J., et al. (2011). Air-sea interaction in the Ligurian Sea: Assessment of a coupled ocean-atmosphere model using in situ data from LASIE07. Monthly Weather Review, 139, 1785–1808. https://doi.org/10.1175/2010MWR3431.1.

    Article  Google Scholar 

  • Small, R. J., Carniel, S., Campbell, T., Teixeira, J., & Allard, R. (2012). The response of the Ligurian and Tyrrhenian Seas to a summer Mistral event: A coupled atmosphere-ocean approach. Ocean Modelling, 48, 30–44. https://doi.org/10.1016/j.ocemod.2012.02.003.

    Article  Google Scholar 

  • Stocchi, P., & Davolio, S. (2017). Intense air-sea exchanges and heavy orographic precipitation over Italy: The role of Adriatic sea surface temperature uncertainty. Atmospheric Research, 196, 62–82.

    Article  Google Scholar 

  • Thévenot, O., Bouin, M. N., Ducrocq, V., Lebeaupin Brossier, C., On, J., & PianezzeDuffourg, F. (2016). Influence of the sea state on Mediterranean heavy precipitation: a case-study from HyMeX SOP1. Quarterly Journal of the Royal Meteorological Society, 142(S1), 377–389.

    Article  Google Scholar 

  • Tiedtke, M. (1989). A comprehensive mass flux scheme for cumulus parameterization in large-scale models. Monthly Weather Review, 117, 1779–1800.

    Article  Google Scholar 

  • Valcke, S. (2013). The OASIS3 coupler: A European climate modelling community software. Geoscientific Model Development, 6, 373–388. https://doi.org/10.5194/gmd-6-373-2013.

    Article  Google Scholar 

  • Vincent, E. M., Lengaigne, M., Vialard, J., Madec, G., Jourdain, N. C., & Masson, S. (2012). Assessing the oceanic control on the amplitude of sea surface cooling induced by tropical cyclones. Journal of Geophysical Research, 117, C05023. https://doi.org/10.1029/2011JC007705.

    Article  Google Scholar 

  • Zhang, C., Wang, Y., & Hamilton, K. (2011). Improved representation of boundary layer clouds over the southeast Pacific in ARW-WRF using a modified Tiedtke cumulus parameterization scheme. Monthly Weather Review, 139, 3489–3513.

    Article  Google Scholar 

Download references

Acknowledgements

A.N.M. is funded by the Flagship Project RITMARE—the Italian Research for the Sea—coordinated by the Italian National Research Council and funded by the Italian Ministry of Education, University, and Research within the National Research Program 2011–2013. L.R. is supported by the National Science Foundation (OCE-1419450). A.P. is supported by the Italian Civil Protection Department and by the Regione Liguria. This article is an outcome of Project MIUR – Dipartimenti di Eccellenza 2018–2022. The authors are grateful for the careful revision by the anonymous reviewers, which led to substantial improvements to the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Meroni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meroni, A.N., Renault, L., Parodi, A. et al. Role of the Oceanic Vertical Thermal Structure in the Modulation of Heavy Precipitations Over the Ligurian Sea. Pure Appl. Geophys. 175, 4111–4130 (2018). https://doi.org/10.1007/s00024-018-2002-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-2002-y

Keywords

Navigation