Skip to main content
Log in

Quantitative Tsunami Risk Assessment in Terms of Building Replacement Cost Based on Tsunami Modelling and GIS Methods: The Case of Crete Isl., Hellenic Arc

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Tsunami risk assessment is an important component of the planning for risk reduction. We considered tsunami risk as a convolution of tsunami hazard, vulnerability of the assets at risk (e.g. buildings) and the economic value exposed. For testing the model, a coastal segment at the west of Heraklion, capital city of Crete Isl., Greece, was selected. Heraklion was hit in the past by strong tectonic and volcanic tsunamis, generated along the Hellenic Arc in the Mediterranean region. The Minoan tsunami produced by pyroclastic flows during the LBA (17th century BC) great eruption of Thera (Santorini) was selected as an extreme tsunami scenario for the hazard (inundation) zone determination through numerical simulation based on Boussinesq equations for fully non-linear waves. It was found that the wave penetrates inland up to ~ 1.2 km, while the maximum water depth is ~ 14 m. The building stock was obtained from the 2011 national census data and validated with the use of orthophotomaps, field inspection and Google Maps. Building vulnerability was determined with the use of the empirical GIS tool DAMASCHE which is based on 2004 Indian Ocean tsunami building damage data and produces damage level by combining water depth and building construction types. The damage level was translated to absolute monetary loss on the basis of cost flat rates determined officially for building replacement, i.e., either reparation or reconstruction, after the destructive earthquakes in Greece during 2014. The method is applicable in other parts of the Mediterranean and beyond provided that appropriate data are available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Algermissen, S.T., Perkins, D.M., Isherwood, W., Gordon, D., Reagor, G., & Howard, C. (1979). Seismic risk evaluation of the Balkan region. In Proceedings of the Seminar on seismic zoning maps, UNESCO, Skopje 1976, vol. 2, pp. 172–240.

  • Ambraseys, N. N. (1960). The seismic sea-wave of July 1956 in the Greek Archipelago. Journal of Geophysical Research, 65(4), 1257–1265.

    Google Scholar 

  • Ambraseys, N. N. (2009). Earthquakes in the mediterranean and middle east, a multidisciplinary study of seismicity up to 1900 (p. 947). Cambridge: Cambridge University Press.

    Google Scholar 

  • Beisel, S., Chubarov, L., Didenkulova, I., Kit, E., Levin, A., Pelinovsky, E., et al. (2009). The 1956 Greek tsunami recorded at Yafo, Israel, and its numerical modelling. Journal of Geophysical Research, 114, C09002. https://doi.org/10.1029/2008JC005262.

    Google Scholar 

  • Benchekroun, S., Omira, R., Baptista, M. A., El Mouraouah, A., Iben Brahim, A., & Toto, E. A. (2013). Tsunami impact and vulnerability in the harbor area of Tangier. Geomatics Natural Hazards and Risk. https://doi.org/10.1080/19475705.2013.858373.

    Google Scholar 

  • Bruins, H. J., McGillivray, J. A., Synolakis, C. E., Benjamini, Ch., Keller, J., Kisch, H. J., et al. (2008). Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini. Journal of Archaeological Science, 35, 191–212.

    Google Scholar 

  • Burbidge, D., Cummins, P. R., Mleczko, R., & Thio, H. A. (2008). Probabilistic tsunami hazard assessment for Western Australia. Pure and Applied Geophysics, 165, 2059–2088.

    Google Scholar 

  • Cas, R. A. F., & Wright, J. V. (1991). Subaqueous pyroclastic flows ignimbrites: An assessment. Bulletin of Volcanology, 53, 357–380.

    Google Scholar 

  • Charvet, I., Ioannou, I., Rossetto, T., Suppasri, A., & Imamuara, F. (2014). Empirical fragility assessment of buildings affected by the 2011 Great East Japan tsunami using improved statistical models. Natural Hazards, 73, 951–973.

    Google Scholar 

  • Charvet, I., Macabuag, J., & Rossetto, T. (2017). Estimating tsunami-induced building damage through fragility functions: Critical review and research needs. Frontiers in Built Environment, 3, 36. https://doi.org/10.3389/fbuil.2017.00036.

    Google Scholar 

  • Cita, M. B., & Aloisi, G. (2000). Deep-sea tsunami deposits triggered by the explosion of Santorini (3500 years BP), Eastern Mediterranean. Sedimentary Geology, 135, 181–302.

    Google Scholar 

  • Cita, M. B., Camerlenghi, A., Kastens, K. A., & McCoy, F. W. (1984). New findings of bronze age homogenites in the Ionian sea: Geodynamic implications for the Mediterranean. Marine Geology, 55, 47–62.

    Google Scholar 

  • Cita, M. B., Camerlenghi, A., & Rimoldi, B. (1996). Deep-sea tsunami deposits in the eastern Mediterranean: New evidence and depositional models. Sedimentary Geology, 104, 155–173.

    Google Scholar 

  • Curtis, G. D., & Pelinovski, E. N. (1999). Evaluation of tsunami risk for mitigation and warning. Science of Tsunami Hazards, 17(3), 187–192.

    Google Scholar 

  • Dall’Osso, F., Dominey-Howes, D., Tarbotton, C., et al. (2016). Revision and improvement of the PTVA-3 model for assessing tsunami building vulnerability using “international expert judgment”: Introducing the PTVA-4 model. Natural Hazards, 83, 1229.

    Google Scholar 

  • Dall’Osso, F., Maramai, A., Graziani, L., Brizuela, B., Cavalletti, A., Gonella, M., et al. (2010). Applying and validating the PTVA-3 Model at the Aeolian Islands, Italy: Assessment of the vulnerability of buildings to tsunamis. Natural Hazards and Earth Systems Sciences, 10, 1547–1562.

    Google Scholar 

  • Davies, G., Griffin, J., Løvholt, F., Glimsdal, S., Harbitz, C., Thio, H. K., et al. (2017). A global probabilistic tsunami hazard assessment from earthquake sources. In E. M. Scourse, N. A. Chapman, D. R. Tappin, & S. R. Wallis (Eds.), Tsunamis: Geology, hazards and risks (p. 456). London: Geological Society, London Special Publications. https://doi.org/10.1144/sp456.5.

    Google Scholar 

  • De Lange, W., Prasetya, G., & Healy, G. T. (2001). Modelling of tsunami generated by pyroclastic flows (ignimbrites). Natural Hazards, 24, 251–266.

    Google Scholar 

  • De Martini, P. M., Barbano, M. S., Smedile, A., Gerardi, F., Pantosti, D., Del Carlo, P., et al. (2010). A unique 4000 year long geological record of multiple tsunami inundations in the Augusta Bay (eastern Sicily, Italy). Marine Geology, 276, 42–57.

    Google Scholar 

  • Dias, W. P. S., Yapa, H. D., & Peiris, L. M. N. (2009). Tsunami vulnerability functions from field surveys and Monte Carlo simulation. Civil Engineering and Environmental Systems, 26, 181–194.

    Google Scholar 

  • Didenkulova, I., Monserrat, S., & Tinti, S. (2012). New developments in tsunami science: From hazard to risk—a preface. Natural Hazards and Earth System Sciences, 12, 2507–2514. www.nat-hazards-earth-syst-sci.net/12/2507/2012/. https://doi.org/10.5194/nhess-12-2507-2012.

  • Dominey-Howes, D., Dunbar, P., Varner, J., & Papathoma-Kohle, M. (2010). Estimating a probable maximum loss from a Cascadia tsunami. Natural Hazards, 53(1), 43–61.

    Google Scholar 

  • Dominey-Howes, D., Papadopoulos, G. A., & Dawson, A. G. (2000). Geological and historical investigation of the 1650 Mt. Columbo (Thera Island) eruption and tsunami, Aegean Sea, Greece. Natural Hazards, 21, 83–96.

    Google Scholar 

  • EC-Working Paper. (2010). Commission Staff Working Paper-Risk Assessment and Mapping, Guidelines for Disaster Management. SEC (2010), 1626 final, Brussels, p. 42.

  • El-Sayed, A., Romanelli, F., & Panza, G. (2000). Recent seismicity and realistic waveforms modelling to reduce the ambiguities about the 1303 seismic activity in Egypt. Tectonophysics, 328, 341–357.

    Google Scholar 

  • Fournier d’ Albe, E. M. (1982). An approach to earthquake risk management. Engineering Structures, 4, 147–152.

    Google Scholar 

  • Galanopoulos, A. G. (1957). The seismic sea-wave of 9 Iouliou 1956. Praktika Academy Athens, 32, 90–101. (in Greek with Engl. abstr.).

    Google Scholar 

  • Gardi, A., Valencia, N., Guillande, R., & André, C. (2011). Inventory of uncertainties associated with the process of tsunami damage assessment on buildings (SCHEMA FP6 EC co-funded project). Natural Hazards and Earth Systems Sciences, 11, 883–893.

    Google Scholar 

  • Gardi, A., Valencia, N., & Sheer, S. (2009). WP3.3–G.I.S. conceptual model and processing for production of elements required for test sites scenarios, Deliverable 3.1 part II, SCHEMA project.

  • Geist, E. L., & Parsons, T. (2006). Probabilistic analysis of tsunami hazards. Natural Hazards, 37, 277–314.

    Google Scholar 

  • Goda, K., & Song, J. (2015). Uncertainty modelling and visualization for tsunami hazard and risk mapping: A case study for the 2011 Tohoku earthquake. Stoch: Environmental Research and Risk Assessment. https://doi.org/10.1007/s00477-015-1146-x.

    Google Scholar 

  • González-Riancho, P., Aguirre-Ayerbe, I., García-Aguilar, O., Medina, R., González, M., Aniel-Quiroga, I., et al. (2014). Integrated tsunami vulnerability and risk assessment: Application to the coastal area of El Salvador. Natural Hazards and Earth Systems Sciences, 14, 1223–1244. https://doi.org/10.5194/nhess-14-1223-2014.

    Google Scholar 

  • Goodman-Tchernov, B. N., Dey, H. W., Reinhardt, E. G., McCoy, F., & Mart, Y. (2009). Tsunami waves generated by the Santorini eruption reached Eastern Mediterranean shores. Geology, 37, 943–946.

    Google Scholar 

  • Grilli, S. T., Ioualalen, M., Asavanant, J., Shi, F., Kirby, J. T., & Watts, Ph. (2007). Source constariants and model simulation of the December 26, 2004 Indian Ocean tsunami. Journal of Waterway Port Coastal and Ocean Engineering, 133(6), 414–428.

    Google Scholar 

  • Grilli, S. T., & Watts, Ph. (1999). Modelling of waves generated by a moving submerged body: Applications to underwater landslides. Engineering Analysis with Boundary Elements, 23(8), 645–656.

    Google Scholar 

  • Guidoboni, E., & Comastri, A. (1997). The large earthquake of 8 August 1303 in Crete: Seismic scenario and tsunami in the Mediterranean area. Journal of Seismology, 1, 55–72.

    Google Scholar 

  • Guidoboni, E., & Comastri, A. (2005). Catalogue of Earthquakes and Tsunamis in the Mediterranean Area from the 11th to the 15th century (p. 1037). Rome: Istituto Nazionale di Geofisica e Vulcanologia.

    Google Scholar 

  • Guidoboni, E., Comastri, A., & Traina, G. (1994). Catalogue of ancient earthquakes in the Mediterranean area up to the 10th Century (p. 504). Rome-Bologna: ING-SGA.

    Google Scholar 

  • Hancilar, U. (2012). Identification of elements at risk for a credible tsunami event for Istanbul. Natural Hazards and Earth Systems Sciences, 12, 107–119. https://doi.org/10.5194/nhess-12-107-2012.

    Google Scholar 

  • Hébert, H., Schindele, F., Altinok, Y., Alpar, B., & Gazioglu, C. (2005). Tsunami hazard in the Marmara Sea (Turkey): A numerical approach to discuss active faulting and impact on the Istanbul coastal areas. Marine Geology, 215, 23–43.

    Google Scholar 

  • Hettiarachchi, S. S. L., Samarawickrama, S. P., & Wijeratne, N. (2011). Risk assessment and management for tsunami hazard-case study of the port city of Galle (p. 30). New York: UNDP.

    Google Scholar 

  • Hieke, W. (1984). A thick Holocene homogenite from the Ionian Abyssal Plain (Eastern Mediterranean). Marine Geology, 55, 63–78.

    Google Scholar 

  • IOC Intergovernmental Oceanographic Commission. (2013). Tsunami Glossary, Technical Series 85 (pp. 1–42). Paris: UNESCO.

    Google Scholar 

  • IOC-Intergovernmental Oceanographic Commission. (2009). Tsunami risk assessment and mitigation in the Indian Ocean; Knowing your tsunami risk—and what do about it. IOC Manuals and Guides, 52. Paris: UNESCO.

    Google Scholar 

  • Ioualalen, M., Asavanant, J., Shi, F., Kirby, J. T., & Watts, Ph. (2007). Modelling the 26 December 2004 Indian Ocean tsunami: Case study of impact in Thailand. Journal of Geophysical Research, 112, C07024. https://doi.org/10.1029/2006JC003850.

    Google Scholar 

  • Ioualalen, M., Pelletier, B., Regnier, M., & Watts, Ph. (2006). Numerical modelling of the 26th November 1999 Vanuatu tsunami. Journal of Geophysical Research, 1111, C06030. https://doi.org/10.1029/2005JC003249.

    Google Scholar 

  • Jaimes, M. A., Reinoso, E., Ordaz, M., Huerta, B., Silva, R., Mendoza, E., et al. (2016). A new approach to probabilistic earthquake-induced tsunami risk assessment. Ocean and Coastal Management, 119, 68–75.

    Google Scholar 

  • Jelínek, R., & Krausmann, E. (2008). Approaches to tsunami risk assessment. European Commission Joint Research Centre, Scientific and Technical Reports, EUR 23573 EN, Ispra, Italy.

  • Jelínek, R., Krausmann, E., González, M., Álvarez-Gómez, J. A., Birkmann, J., & Welle, T. (2012). Approaches for tsunami risk assessment and application to the city of Cádiz, Spain. Natural Hazards, 60, 273–293. https://doi.org/10.1007/s11069-011-0009-0.

    Google Scholar 

  • Karim, K. R., & Yamazaki, F. (2003). A simplified method of constructing fragility curves for highway bridges. Earthquake Engineering and Structural Dynamics, 32, 1603–1626.

    Google Scholar 

  • Kastens, K. A., & Cita, M. B. (1981). Tsunami-induced transport in the abyssal Mediterranean Sea. Geological Society of America Bulletin, 92, 845–857.

    Google Scholar 

  • Kennedy, A. B., Chen, Q., Kirby, J. T., & Dalrymple, R. A. (2000). Boussinesq modelling of wave transformation, breaking, and run-up I: 1D. Journal of Waterway Port Coastal and Ocean Engineering ASCE, 126(1), 39–47.

    Google Scholar 

  • Kirby, J.T., Chen, Q., Noyes, T.J., Elgar, S., & Guza, R. T. (2003). Evaluationg of low frequency prediction of a Boussinesq wave model: Field cases. In Proceeding, ISOPE-2003, international society of offshore and polar engineers, Honolulu, May 25–30, pp. 396–403.

  • Kirby, J.T., Wei, G., Chen, Q., Kennedy, A. B., & Dalrymple, R. A. (1998). FUNWAVE 1.0. Fully nonlinear Boussinesq wave model, documentation and user’s manual, Rep. CACR-98-06, Cent. For Appl. Coastal Res., Department of Civil and Environmental Engineering, University of Delaware, Newark.

  • Kulikov, E. A., Rabinovich, A. B., & Thomson, R. E. (2005). Estimation of tsunami risk for the coasts of Peru and northern Chile. Natural Hazards, 35, 185–209.

    Google Scholar 

  • Leelawat, N., Suppasri, A., Charvet, I., & Imamura, F. (2014). Building damage from the 2011 Great East Japan tsunami: Quantitative assessment of influential factors. A new perspective on building damage analysis. Natural Hazards, 73, 449–471. https://doi.org/10.1007/s11069-014-1081-z.

    Google Scholar 

  • Leone, F., Lavigne, F., Paris, R., Denain, J. C., & Vinet, F. (2010). A spatial analysis of the December 26th, 2004 tsunami-induced damages: Lessons learned for a better risk assessment integrating buildings vulnerability. Applied Geography. https://doi.org/10.1016/j.apgeog.2010.07.009.

    Google Scholar 

  • Li, L., Switzer, A. D., Chan, Ch-H, Wang, Y., Weiss, R., & Qiu, Q. (2016). How heterogeneous coseismic slip affects regional probabilistic tsunami hazard assessment: A case study in the South China Sea. Journal of Geophysical Research Solid Earth. https://doi.org/10.1002/2016JB013111.

    Google Scholar 

  • Lorito, S., Tiberti, M. M., Basili, R., Piatanesi, A., & Valensise, G. (2007). Earthquake-generated tsunamis in the Mediterranean Sea: Scenarios of potential threats to southern Italy. Journal of Geophysical Research, 113, B01301. https://doi.org/10.1029/2007JB004943.

    Google Scholar 

  • Løvholt, F., Glimsdal, S., Lynett, P., & Pedersen, G. (2015). Simulating tsunami propagation in fjords with long-wave models. Natural Hazards and Earth Systems Sciences, 15, 657–669. https://doi.org/10.5194/nhess-15-657-2015.

    Google Scholar 

  • Makropoulos, K., Kaviris, G., & Kouskouna, V. (2012). An updated and extended earthquake catalogue for Greece and adjacent areas since 1900. Natural Hazards and Earth Systems Sciences, 12(1425–1430), 2012. https://doi.org/10.5194/nhess-12-1425-2012.

    Google Scholar 

  • Marinatos, S. (1939). The volcanic destruction of Minoan Crete. Antiquity, 13, 425–439.

    Google Scholar 

  • McCoy, F., & Heiken, G. (2000). Tsunami generated by the Late Bronze Age eruption of Thera (Santorini), Greece. Pure and Applied Geophysics, 157, 1227–1256.

    Google Scholar 

  • McCoy, F. W., & Papadopoulos, G. A. (2001). Tsunami generation during the Late Bronze Age Eruption of Thera: Evidence from tsunami deposits on Thera, Crete, West Turkey and the Deep Sea. American Journal of Archives, 105, 258–259.

    Google Scholar 

  • Minoura, K., Imamura, F., Kuran, U., Nakamura, T., Papadopoulos, G. A., Takahashi, T., et al. (2000). Discovery of Minoan tsunami deposits. Geology, 28, 59–62.

    Google Scholar 

  • Nadim, F., & Glade, T. (2006). On tsunami risk assessment for the west coast of Thailand. In Nadim, F., Pöttler, R., Einstein, H., Klapperich, H., & Kramer, S. (Eds.), ECI symposium series, p. 7.

  • Necmioglu, O., & Özel, N. M. (2015). Earthquake scenario-based tsunami wave heights in the eastern mediterranean and connected seas. Pure and Applied Geophysics, 172, 3617–3638. https://doi.org/10.1007/s00024-015-1069-y.

    Google Scholar 

  • Newhall, C. G., & Self, S. (1982). The volcanic explosivity index (VEI): An estimate of explosive magnitude for historical volcanism. Journal of Geophysical Research, 87, 1231–1238.

    Google Scholar 

  • Nomikou, P., Carey, S., Papanikolaou, D., Croff Bell, K., Sakellariou, D., Alexandri, M., et al. (2012). Submarine volcanoes of the Kolumbo volcanic zone NE of Santorini Caldera, Greece. Global Planetary Change, 90–91, 135–151.

    Google Scholar 

  • Nomikou, P., Druitt, T. H., Hübscher, H., et al. (2016). Post-eruptive flooding of Santorini caldera and implications for tsunami generation. Nature Communications, 7, 13332. https://doi.org/10.1038/ncomms13332.

    Google Scholar 

  • Novikova, T., Papadopoulos, G. A., & McCoy, F. W. (2011). Modelling of tsunami generated by the Giant Late Bronze Age Eruption of Thera, South Aegean Sea, Greece. Geophysical Journal International. https://doi.org/10.1111/j.1365-246x.2011.05062.x.

    Google Scholar 

  • Okal, E. A., Synolakis, C. E., Uslu, B., Kalligeris, N., & Voukouvalas, E. (2009). The 1956 earthquake and tsunami in Amorgos, Greece. Geophysical Journal International, 178, 1533–1554.

    Google Scholar 

  • Omira, R., Baptista, M. A., Miranda, J. M., Toto, E., Catita, C., & Catalão, J. (2010). Tsunami vulnerability assessment of Casablanca Morocco using numerical modelling and GIS tools. Natural Hazards and Earth Systems Sciences, 54, 75–95.

    Google Scholar 

  • Pagnoni, G., Armigliato, A., & Tinti, S. (2015). Scenario-based assessment of buildings’ damage and population exposure due to earthquake-induced tsunamis for the town of Alexandria, Egypt. Natural Hazards and Earth System Sciences, 15, 2669–2695. https://doi.org/10.5194/nhess-15-2669-2015.

    Google Scholar 

  • Pagnoni, G., & Tinti, S. (2016). Application and comparison of tsunami vulnerability and damage models for the Town of Siracusa, Sicily, Italy. Pure and Applied Geophysics, 173, 3795–3822. https://doi.org/10.1007/s00024-016-1261-8.

    Google Scholar 

  • Papadopoulos, G. A. (2011). A seismic history of Crete: Earthquakes and tsunamis, 2000 B.C.–A.D. 2010 (p. 415). Athens: Ocelotos Publishing.

    Google Scholar 

  • Papadopoulos, G. A. (2015). Tsunamis in the European-Mediterranean Region: From historical record to risk mitigation (p. 271). Amsterdam: Elsevier.

    Google Scholar 

  • Papadopoulos, G. A. (2017). Earthquake sources and seismotectonics in the area of Crete. In S. Jusseret & M. Sintubin (Eds.), Minoan earthquakes-breaking the myth through interdisciplinarity. Studies in archaeological sciences (pp. 165–190). Leuven: Leuven University Press.

    Google Scholar 

  • Papadopoulos, G. A., & Dermentzopoulos, Th. (1998). A tsunami risk management pilot study in Heraklion, Crete. Natural Hazards, 18, 91–118.

    Google Scholar 

  • Papadopoulos, G. A., Gràcia, E., Urgeles, R., Sallares, V., De Martini, P. M., Pantosti, D., et al. (2014a). Historical and pre-historical tsunamis in the Mediterranean and its connected seas: Geological signatures, generation mechanisms and coastal impacts. Marine Geology. https://doi.org/10.1016/j.margeo.2014.04.014.

    Google Scholar 

  • Papadopoulos, G. A., & Imamura, F. (2001). A proposal for a new tsunami intensity scale. In Proceedings of International Tsunami Symposium , Aug 710, 2001, Seattle, pp. 569–577.

  • Papadopoulos, G. A., Karastathis, V. K., Koukouvelas, I., Sachpazi, M., Baskoutas, I., Chouliaras, G., et al. (2014b). The Cephalonia, Ionian Sea (Greece), sequence of strong earthquakes of January-February 2014: a first report. Research in Geophysics. https://doi.org/10.4081/rg.2014.5441.

    Google Scholar 

  • Papadopoulos, G. A., & Pavlides, S. (1992). The 1956 large shock in the South Aegean: Macroseismic field, faulting and neotectonics of the Amorgos Island. Earth and Planetary Sciences Letters, 113, 383–396.

    Google Scholar 

  • Papathoma M. (2003). Tsunami vulnerability assessment using a Geographical Information System with special reference to Greece. PhD Thesis, Coventry University, March 2003, p. 289.

  • Papathoma, M., & Dominey-Howes, D. (2003). Tsunami vulnerability assessment and its implications for coastal hazard analysis and disaster management planning, Gulf of Corinth, Greece. Natural Hazards and Earth System Sciences, 3, 733–747.

    Google Scholar 

  • Papathoma, M., Dominey-Howes, D., Zong, Y., & Smith, D. (2003). Assessing tsunami vulnerability, an example from Herakleio, Crete. Natural Hazards and Earth System Sciences, 3, 377–389.

    Google Scholar 

  • Papazachos, B. C., & Papazachou, C. B. (1997). Earthquakes of Greece (p. 304). Editions Ziti: Thessaloniki.

    Google Scholar 

  • Papazachos, B. C., & Papazachou, C. B. (2003). Earthquakes of Greece (p. 286). Thessaloniki: Editions Ziti. (in Greek).

    Google Scholar 

  • Pararas-Carayannis, G. (1988). Risk assessment of tsunami hazard. In M. I. El-Sabah & T. S. Murty (Eds.), Natural and man-made hazards (pp. 183–191). USA: D. Riedel.

    Google Scholar 

  • Perissoratis, C., & Papadopoulos, G. A. (1999). Sediment instability and slumping in the southern Aegean Sea and the case history of the 1956 tsunami. Marine Geology, 161, 287–305.

    Google Scholar 

  • Polonia, A., Bonatti, E., Carmelenghi, A., Lucchi, R. G., Panieri, G., & Gasperini, L. (2013). Mediterranean megaturbidite triggered by the AD 365 Crete earthquake and tsunami. Scientific Reports, 3, 1285. https://doi.org/10.1038/srep01285.

    Google Scholar 

  • Power, W., Wallace, L., Wang, X., & Reyners, M. (2012). Tsunami hazard posed to New Zealand by the Kermadec and Southern New Hebrides Subduction Margins: An assessment based on plate boundary kinematics, interseismic coupling, and historical seismicity. Pure and Applied Geophysics, 169, 1. https://doi.org/10.1007/s00024-011-0299-x.

    Google Scholar 

  • Qinghai, Z., & Adams, W. M. (1988). Tsunami risk analysis for China. Natural Hazards, 1, 181–185.

    Google Scholar 

  • Reese, S., Cousins, W. J., Power, W. L., Palmer, N. G., Tejakusuma, I. G., & Nugrahadi, S. (2007). Tsunami vulnerability of buildings and people in South Java? Field observations after the July 2006 Java tsunami. Natural Hazards and Earth Systems Sciences, 7, 573–589.

    Google Scholar 

  • Rehman, K., & Cho, Y. S. (2016). Building damage assessment using scenario based tsunami numerical analysis and fragility curves. Water, 8(109), 1–17. https://doi.org/10.3390/w8030109.

    Google Scholar 

  • Rikitake, T., & Aida, I. (1988). Tsunami hazard probability in Japan. Bulletin of the Seismological Society of America, 78, 1268–1278.

    Google Scholar 

  • Sato, H., Murakami, H., Kozuki, Y., & Yamamoto, N. (2003). Study on a simplified method of tsunami risk assessment. Natural Hazards, 29, 325–340.

    Google Scholar 

  • Selva, J., Tonini, R., Molinari, I., Tiberti, M. M., Romano, F., Grezio, A., et al. (2016). Quantification of source uncertainties in Seismic Probabilistic Tsunami Hazard Analysis (SPTHA). Geophysical Journal International, 205, 1780–1803. https://doi.org/10.1093/gji/ggw107.

    Google Scholar 

  • Sepúlveda, I., Liu, P. L.-F., Grigoriu, M., & Pritchard, M. (2017). Tsunami hazard assessments with consideration of uncertain earthquake slip distribution and location. Journal of Geophysical Research Solid Earth. https://doi.org/10.1002/2017JB014430.

    Google Scholar 

  • Smedile, A., De Martini, P. M., Pantosti, D., Bellucci, L., Del Carlo, P., Gasperini, L., et al. (2011). Possible tsunamis signatures from an integrated study in the Augusta Bay offshore (Eastern Sicily-Italy). Marine Geology Marine Geology, 281, 1–13. https://doi.org/10.1016/j.margeo.2011.01.002.

    Google Scholar 

  • Smith, K. (1992). Environmental hazards-assessing risk and reducing disaster (1st ed., p. 324). Abingdon: Routledge.

    Google Scholar 

  • Sørensen, Μ. Β., Spada, Μ., Babeyko, Α., Wiemer, S., & Grűnthal, G. (2012). Probabilistic tsunami hazard in the Mediterranean Sea. Journal of Geophysical Research, 117, B01305. https://doi.org/10.1029/2010JB008169.

    Google Scholar 

  • Strunz, G., Post, J., Zosseder, K., Wegscheider, S., Mück, M., Riedlinger, T., et al. (2011). Tsunami risk assessment in Indonesia. Natural Hazards and Earth Systems Sciences, 11, 67–82. https://doi.org/10.5194/nhess-11-67-2011.

    Google Scholar 

  • Suppasri, A., Koshimura, S., Imamura, F., Ruangrassamee, A., & Foytong, P. (2013a). A review of tsunami damage assessment methods and building performance in Thailand. Journal of Earthquake and Tsunami, 7(5), 1350036.

    Google Scholar 

  • Suppasri, A., Mas, E., Charvet, I., Gunasekera, R., Imai, K., Fukutani, Y., et al. (2013b). Building damage characteristics based on surveyed data and fragility curves of the 2011 Great East Japan tsunami. Natural Hazards, 66, 319–341.

    Google Scholar 

  • Tarbotton, C., Dall’Osso, F., Dominey-Howes, D., & Goff, J. (2015). The use of empirical vulnerability functions to assess the response of buildings to tsunami impact: Comparative review and summary of best practice. Earth Science Reviews, 142, 120–134.

    Google Scholar 

  • Tinti, S., Armigliato, A., Tonini, R., Maramai, A., & Graziani, L. (2005). Assessing the hazard related to tsunamis of tectonic origin: A hybrid statistical-deterministic method applied to southern Italy coasts. ISET Journal of Earthquake Technology, 42(4), 189–201.

    Google Scholar 

  • Tinti, S., Graziani, L., Brizuela, B., Maramai, A., & Gallazzi, S. (2012). Applicability of the Decision Matrix of North Eastern Atlantic, Mediterranean and connected seas Tsunami Warning System to the Italian tsunamis. Natural Hazards and Earth Systems Sciences, 12, 843–857. https://doi.org/10.5194/nhess-12-843-2012.

    Google Scholar 

  • Tonini, R., Armigliato, A., Pagnoni, G., Zaniboni, F., & Tinti, S. (2011). Tsunami hazard for the city of Catania, eastern Sicily, Italy, assessed by means of Worst-case Credible Tsunami Scenario Analysis (WCTSA). Natural Hazards and Earth Systems Sciences, 11, 1217–1232. https://doi.org/10.5194/nhess-11-1217-2011.

    Google Scholar 

  • Ulrova, M., Paris, R., Nomikou, P., Kelfoun, K., Leibrandt, S., Tappin, D. R., et al. (2016). Source of the tsunami generated by the 1650 AD eruption of Kolumbo submarine volcano (Aegean Sea, Greece). Journal of Volcanology and Geothermal Research, 321, 125–139. https://doi.org/10.1016/j.jvolgeores.2016.04.034.

    Google Scholar 

  • UNISDR. (2009). Terminology on Disaster, Risk Reduction. International Strategy for Disaster Reduction, p. 35. http://www.unisdr.org/eng/library/lib-terminology-eng.htm. Accessed 12 Nov 2017.

  • Valencia, N., Gardi, A., Gauraz, A., Leone, F., & Guillande, R. (2011). New tsunami damage functions developed in the framework of SCHEMA project: Application to European-Mediterranean coasts. Natural Hazards and Earth Systems Sciences, 11, 2835–2846.

    Google Scholar 

  • Watts, P., Grilli, S. T., Kirby, J. T., Fryer, G. J., & Tappin, D. R. (2003). Landslide tsunami case studies using a Boussinesq model and a fully nonlinear tsunami generation model. Natural Hazards and Earth Systems Sciences, 3(5), 391–402.

    Google Scholar 

  • Wegscheider, S., Post, J., Zosseder, K., Mück, M., Strunz, G., Riedlinger, T., et al. (2011). Generating tsunami risk knowledge at community level as a base for planning and implementation of risk reduction strategies. Natural Hazards and Earth Systems Sciences, 11, 249–258. https://doi.org/10.5194/nhess-11-249-2011.

    Google Scholar 

  • Wei, G., & Kirby, J. T. (1995). Time-depended numerical code for extended Boussinesq equations. Journal of Waterway Port Coastal and Ocean Engineering ASCE, 121(5), 251–261.

    Google Scholar 

  • Wei, G., Kirby, J. T., Grilli, S. T., & Subramanya, R. (1995). A fully nonlinear Boussinesq model for free surface waves. Part 1: Highly nonlinear unsteady waves. Journal of Fluid Mechanics, 294, 71–92.

    Google Scholar 

  • Yeh, H., Sato, S., & Tajima, Y. (2013). The 11 March 2011 East Japan Earthquake and tsunami: Tsunami effects on coastal infrastructure and buildings. Pure and Applied Geophysics, 170, 1019–1031.

    Google Scholar 

  • Yolsal-Çevikbilen, S., & Taymaz, T. (2012). Earthquake source parameters along the Hellenic subduction zone and numerical simulations of historical tsunamis in the Eastern Mediterranean. Tectonophysics, 536–537, 61–100.

    Google Scholar 

Download references

Acknowledgements

This research is a contribution to the EU-FP7 tsunami research project ASTARTE (Assessment, Strategy And Risk Reduction for Tsunamis in Europe), Grant agreement no.: 603839, 2013-10-30. We are thankful to two anonymous reviewers for their constructive comments that improved substantially the initial manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Triantafyllou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Triantafyllou, I., Novikova, T., Charalampakis, M. et al. Quantitative Tsunami Risk Assessment in Terms of Building Replacement Cost Based on Tsunami Modelling and GIS Methods: The Case of Crete Isl., Hellenic Arc. Pure Appl. Geophys. 176, 3207–3225 (2019). https://doi.org/10.1007/s00024-018-1984-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1984-9

Keywords

Navigation