Skip to main content
Log in

Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

An Mw 8.2 earthquake affected on September 8, 2017 the Cocos plate beneath the Caribbean plate next to the transform contact with the North American plate across the Tehuantepec gap, one of the two gaps that exist along the Mexican subduction zone offshore Chiapas. The epicenter occurred at a depth of 47 km and was associated with a highly steep normal fault parallel to the trench. The origin can be related to slab pull forces, dehydration processes and reactivation of outer rise faults. This earthquake produced positive changes in the Coulomb static stress, which would favor the development of thrust displacements along the interplate contact across the Tehuantepec gap instead of liberating tensions accumulated on it for decades. In the case that stresses were not released steadily in the future, a thrusting-related event with a magnitude of Mw 7.9 or higher could be expected after the September 8, 2017 Chiapas earthquake. However, the differential weight of the forearc offshore (that contains a region with a high positive gravity gradient) could inhibit rupture propagation to the coast precluding higher magnitudes. Combined and satellite only earth gravity field models show a highly heterogeneous density structure along the forearc of the North America-Caribbean plates and in particular at the studied zone. Maximum displacements in the rupture zone correlate to minimum gravity-derived anomalies showing a probable relationship between the differential weight of the forearc structure and the extensional faulting affecting the bending of the Cocos plate at depth. In this sense, variable sediment thicknesses over the forearc, and a high gravity gradient zone parallel to the trench in the outer forearc, could be reflecting physical heterogeneities that influence the propagation of the rupture zone. Additionally, to the north, a highly positive gradient signal related to the subducted Tehuantepec Fz projection beneath the North American plate marks the ending of the main slip patch acting as a barrier to the seismic rupture propagation. This event exemplifies (1) how extensional ruptures in the downgoing slab of a subduction zone can increment accumulated elastic strain across a seismic gap instead of liberating tensions, (2) that rupture propagation for this intraplate event was probably controlled (at shallow depths) by the density structure of the forearc, similarly to recent interplate earthquakes along the Chilean margin; (3) how a low gravity gradient signal and low density structures identified from the inversion model in the region of the outer forearc, where the normal stress increased after the main seismic event, suggest a higher risk of occurrence of a great megathrust earthquake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Álvarez, O., Folguera, A., & Gimenez, M. (2017a). Rupture area analysis of the Ecuador (Musine) M w = 7.8 thrust earthquake on April 16 2016, using GOCE derived gradients. Geodesy and Geodynamics, 8, 49–58. https://doi.org/10.1016/j.geog.2017.01.005.

    Article  Google Scholar 

  • Álvarez, O., Folguera, A., & Gimenez, M. (2017b). Rupture area analysis of the Ecuador (Musine) M w = 7.8 thrust earthquake on April 16 2016, using GOCE derived gradients. Geodesy and Geodynamics, 8, 49–58. https://doi.org/10.1016/j.geog.2017.01.005.

    Article  Google Scholar 

  • Álvarez, O., Gimenez, M. E., & Braitenberg, C. (2013). Nueva metodología para el cálculo del efecto topográfico para la corrección de datos satelitales. Revista Asociación Geologica Argentina, 70(4), 422–429.

    Google Scholar 

  • Álvarez, O., Gimenez, M. E., Braitenberg, C., & Folguera, A. (2012). GOCE satellite derived gravity and gravity gradient corrected for topographic effect in the South Central Andes region. Geophysical Journal International, 190(2), 941–959. https://doi.org/10.1111/j.1365-246X.2012.05556.x.

    Article  Google Scholar 

  • Álvarez, O., Gimenez, M., Guillen, S., Tocho, C., & Folguera, A. (2018). Pre-seismic GOCE derived geoid changes for forecasting megathrust earthquakes: the Pisagua 2014 earthquake. Geodesy and Geodynamics, 9(1), 50–56. https://doi.org/10.1016/j.geog.2017.09.005.

    Article  Google Scholar 

  • Álvarez, O., Nacif, S., Gimenez, M., Folguera, A., & Braitenberg, A. (2014). Goce derived vertical gravity gradient delineates great earthquake rupture zones along the Chilean margin. Tectonophysics, 622, 198–215. https://doi.org/10.1016/j.tecto.2014.03.011.

    Article  Google Scholar 

  • Alvarez, O., Nacif, S., Spagnotto, S., Folguera, A., Gimenez, M., Chlieh, M., et al. (2015). Gradients from GOCE reveal gravity changes before Pisagua M w = 8.2 and Iquique M w = 7.7 large megathrust earthquakes. Journal of South American Earth Sciences, 64, 15–29. https://doi.org/10.1016/j.jsames.2015.09.014.

    Article  Google Scholar 

  • Alvarez, O., Pesce, A., Gimenez, M., Folguera, A., Soler, S., & Wenjin, C. (2017). Analysis of the Illapel M w = 8.3 thrust earthquake rupture zone using GOCE derived gradients. Pure and Applied Geophysics, 174, 47–75. https://doi.org/10.1007/s00024-016-1376-y.

    Article  Google Scholar 

  • Amante, C., Eakins, B.W. (2009). ETOPO1, 1 arc-minute global relief model: Procedures, data sources and analysis. NOAA Technical Memorandum NESDIS NGDC-24 National Geophysical Data Center, NOAA. https://doi.org/10.7289/V5C8276M.

  • Aron, F., Allmendinger, R. W., Cembrano, J., González, G., & Yáñez, G. (2013). Permanent forearc extension and seismic segmentation: insights from the 2010 Maule earthquake, Chile. Journal of Geophysical Research, 118, 724–739. https://doi.org/10.1029/2012jb009339.

    Google Scholar 

  • Bak, P., & Tang, C. (1989). Earthquakes as a self-organized critical phenomenon. Journal of Geophysical Research, 94(B11), 15635–15637. https://doi.org/10.1029/JB094iB11p15635.

    Article  Google Scholar 

  • Barthelmes, F. (2013). Definition of functionals of the geopotential and their calculation from spherical harmonic models: theory and formulas used by the calculation service of the International Centre for Global Earth Models (ICGEM); http://icgem.gfz-potsdam.de/ICGEM/; revised Edition (Scientific Technical Report ; 09/02), Potsdam: Deutsches GeoForschungsZentrum GFZ, 32p. https://doi.org/10.2312/GFZ.b103-0902-26.

  • Bassett, D., & Watts, A. B. (2015a). Gravity anomalies, crustal structure, and seismicity at subduction zones: 1. Seafloor roughness and subducting relief. Geochemistry, Geophysics, Geosystems, 16, 1508–1540. https://doi.org/10.1002/2014GC005684.

    Article  Google Scholar 

  • Bassett, D., & Watts, A. B. (2015b). Gravity anomalies, crustal structure, and seismicity at subduction zones: 2. Interrelationships between fore-arc structure and seismogenic behavior. Geochemistry, Geophysics, Geosystems, 16, 1541–1576. https://doi.org/10.1002/2014GC005685.

    Article  Google Scholar 

  • Boulanger, O., & Chouteau, M. (2001). Constraints in 3D gravity inversion. Geophysical Prospecting, 49, 265–280.

    Article  Google Scholar 

  • Bouman, J., Ebbing, J., & Fuchs, M. (2013). Reference frame transformation of satellite gravity gradients and topographic mass reduction. Journal of Geophysical Research: Solid Earth, 118(2), 759–774. https://doi.org/10.1029/2012JB009747.

    Google Scholar 

  • Braitenberg, C., Mariani, P., Ebbing, J., & Sprlak, M. (2011). The enigmatic Chad lineament revisited with global gravity and gravity-gradient fields. In D. J. J. Van Hinsbergen, S. J. H. Buiter, T. H. Torsvik, C. Gaina, & S. J. Webb (Eds.), The formation and evolution of Africa: a synopsis of 3.8 Ga of earth history (Vol. 357, pp. 329–341). London: Geological Society.

    Google Scholar 

  • Braitenberg, C., Wienecke, S., Ebbing, J., Bom, W., Redfield, T. (2007). Joint gravity and isostatic analysis for basement studies—a novel tool. In: EGM 2007 International Wokshop, Innovation in EM, Grav and Mag Methods: A new perspective for exploration, Villa Orlandi, Capri - Italy, 15-18 April 2007 (http://www2.ogs.trieste.it/egm2007/).

  • Byerlee, J. D. (1978). Friction of rocks. Pure and Applied Geophysics, 116, (4–5), 615–626. https://doi.org/10.1007/BF00876528

    Article  Google Scholar 

  • Chaves, C. A. M., & Ussami, N. (2013). Modeling 3-D density distribution in the mantle from inversion of geoid anomalies: Application to the Yellowstone Province. Journal of Geophysical Research: Solid Earth, 118, 6328–6351. https://doi.org/10.1002/2013JB010168.

    Google Scholar 

  • Cowie, P. A., Vanneste, C., & Sornette, D. (1993). Statistical physics model for the spatiotemporal evolution of faults. Journal of Geophysical Research, 98(B12), 21809–21821.

    Article  Google Scholar 

  • Delouis, B., Nocquet, J., & Vallée, M. (2010). Slip distribution of the February 27, 2010 M w = 8.8 Maule earthquake, central Chile, from static and high-rate GPS, InSAR, and broadband teleseismic data. Geophysical Research Letters. https://doi.org/10.1029/2010GL043899.

    Google Scholar 

  • DeMets, C., Gordon, R. G., & Argus, D. F. (2010). Geologically current plate motions. Geophysical Journal International, 181(1), 1–80. https://doi.org/10.1111/j.1365-246X.2009.04491.x.

    Article  Google Scholar 

  • DeMets, C., Gordon, R. G., Argus, D. F., & Stein, S. (1994). Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motion. Geophysical Research Letters, 21(1994), 2191–2194.

    Article  Google Scholar 

  • Divins, D. L. (2003). Total sediment thickness of the World’s Oceans and Marginal Seas. Boulder: NOAA National Geophysical Data Center.

    Google Scholar 

  • Featherstone, W. (1997). On the use of the geoid in geophysics: a case study over the north west shelf of australia. Exploration Geophysics, 28(1/2), 52–57.

    Article  Google Scholar 

  • Förste, Christoph, Bruinsma, Sean L., Abrikosov, Oleg, Lemoine, Jean-Michel, Marty, Jean Charles, Flechtner, Frank, et al. (2014). EIGEN-6C4 The latest combined global gravity field model including GOCE data up to degree and order 2190 of GFZ Potsdam and GRGS Toulouse. GFZ Data Services. https://doi.org/10.5880/ICGEM.2015.1.

    Google Scholar 

  • Freed, A. (2005). 2005, Earthquake triggering by static, dynamic and postseismic stress transfer. Annual Review of Earth and Planetary Sciences, 33, 335–367. https://doi.org/10.1146/annurev.earth.33.092203.122505.

    Article  Google Scholar 

  • Grombein, T., Heck, B., & Seitz, K. (2013). Optimized formulas for the gravitational field of a tesseroid. Journal of Geodesy, 87, 645–660.

    Article  Google Scholar 

  • Gusman, A. R., Mulia, I. E., & Satake, K. (2018). Optimum sea surface displacement and fault slip distribution of the 2017 Tehuantepec earthquake (M w 8.2) in Mexico estimated from tsunami waveforms. Geophysical Research Letters, 45(2), 646–653. https://doi.org/10.1002/2017GL076070.

    Article  Google Scholar 

  • Hacker, B. R., Peacock, S. M., Abers, G. A., & Holloway, S. D. (2003). Subduction factory 2. Are intermediate-depth earthquakes in subducting slabs linked to metamorphic dehydration reactions? Journal of Geophysical Research, 108(b1), 2030.

    Google Scholar 

  • Havskov, J., Singh, S., & Novelo, D. (1982). Geometry of the Benioff zone in the Tehuantepec area in Southern México. Geofísica Internacional, 21–4, 325–330.

    Google Scholar 

  • Hayes, G. (2017). Preliminary Finite Fault Results for the Sep 08, 2017 Mw 8.2 Earthquake. https://earthquake.usgs.gov/earthquakes/eventpage/us2000ahv0#finite-fault.

  • Hicks, S. P., Rietbrock, A., Rydera, I. M. A., Lee, C.-S., & Miller, M. (2014). Anatomy of a megathrust: The 2010 M8.8 Maule, Chile earthquake rupture zone imaged using seismic tomography. Earth and Planetary Science Letters, 405, 142–155. https://doi.org/10.1016/j.epsl.2014.08.028.

    Article  Google Scholar 

  • Hofmann-Wellenhof, B., & Moritz, H. (2006). Physical geodesy (2nd ed., p. 286). Berlin: Springer.

    Google Scholar 

  • Janak, J., & Sprlak, M. (2006). New software for gravity field modelling using spherical armonic. Geodetic and Cartographic Horizon, 52, 1–8. (in Slovak).

    Google Scholar 

  • Jiao, W., Silver, P. G., Fei, Y., & Prewitt, C. T. (2000). Do intermediate- and deep-focus earthquakes occur on pre-existing weak zones? An examination of the Tonga subduction zone. Journal Geophysical Research, 105(B12), 28125–28138.

    Article  Google Scholar 

  • Jung, H., Fei, Y., Silver, P., & Green, H. (2009). Frictional sliding in serpentine at very high pressure. Earth and Planetary Science Letters, 277, 273–279.

    Article  Google Scholar 

  • Jung, H., Green, H. W., II, & Dobrzinetskaya, L. F. (2004). Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature, 428, 545–549.

    Article  Google Scholar 

  • Kelleher, J. A., & McCann, W. R. (1976). Buoyant zones, great earthquakes, and unstable boundaries of subduction. Journal of Geophysical Research, 81, 4885–4908.

    Article  Google Scholar 

  • Kelleher, J. A., Sykes, L. R., & Oliver, J. (1973). Possible criteria for predicting earthquake locations and their applications to major plate boundaries of the Pacific and Caribbean region. Journal of Geophysical Research, 78, 2547–2585.

    Article  Google Scholar 

  • Kilb, D., Gomberg, J., & Fodin, P. B. (2002). Aftershock triggering by complete Coulomb stress changes. Journal of Geophysical Research. https://doi.org/10.1029/2001JB000202.

    Google Scholar 

  • King, G. C. P., Stein, R. S., & Lin, J. (1994). Static stress changes and the triggering of earthquakes. Bulletin of the Seismological Society of America, 84(3), 935–953.

    Google Scholar 

  • Kirby, S., Engdahl, R.E., Denlinger, R. (1996). Intermediate‐Depth Intraslab Earthquakes and Arc Volcanism as Physical Expressions of Crustal and Uppermost Mantle Metamorphism in Subducting Slabs. In: Bebout, G.E., School, D.W., Kirby, S.H., Platt, J.P. (Eds.), Subduction: Top to Bottom, Geophysical Monograph Series, vol. 96 (pp. 195–214). Wiley. https://doi.org/10.1029/GM096p0195.

  • Konstantino, K. (2014). Moment magnitude–rupture area scaling and stress-drop variations for earthquakes in the Mediterranean region. Bulletin of the Seismological Society of America. https://doi.org/10.1785/0120140062.

    Google Scholar 

  • Kopp, H. (2013). Invited review paper: the control of subduction zone structural complexity and geometry on margin segmentation and seismicity. Tectonophysics, 589, 1–16. https://doi.org/10.1016/j.tecto.2012.12.037.

    Article  Google Scholar 

  • Kostoglodov, V., Pacheco, F.J. (1999). 100 years of seismicity in Mexico, Instituto de Geofísica, UNAM (poster). http://usuarios.geofisica.unam.mx/vladimir/sismos/100years.html.

  • Laske, G., Masters, G., Ma, Z., & Pasyanos, M. (2013). Update on CRUST1.0—A 1-degree global model of earth’s crust. Geophysics Research Abstracts, 15, 2658.

    Google Scholar 

  • Last, B. J., & Kubik, K. (1983). Compact gravity inversion. Geophysics, 48, 713–721.

    Article  Google Scholar 

  • LayT, Ye L., Ammon, C. J., & Kanamori, H. (2017). Intraslab rupture triggering megathrust rupture co-seismically in the December 17, 2016 Solomon Islands M w 7.9 earthquake. GJR, 44(3), 1286–1292. https://doi.org/10.1002/2017gl072539.

    Article  Google Scholar 

  • Leonard, M. (2010). Earthquake fault scaling: self-consistent relating of rupture length, width, average displacement, and moment release. Bulletin of the Seismological Society of America, 100(5A), 1971–1988. https://doi.org/10.1785/0120090189.

    Article  Google Scholar 

  • Li, X. (2001). Vertical resolution: Gravity versus vertical gravity gradient. The Leading Edge, 20, 901–904.

    Article  Google Scholar 

  • Li, Y., & Oldenburg, D. W. (1996). 3-D inversion of magnetic data. Geophysics, 61, 394–408.

    Article  Google Scholar 

  • Li, Y., & Oldenburg, D. W. (1998). 3-D inversion of gravity data. Geophysics, 63, 109–119.

    Article  Google Scholar 

  • Lin, J., & Stein, R. S. (2004a). Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research, 109, B02303. https://doi.org/10.1029/2003JB002607.

    Article  Google Scholar 

  • Lin, J., & Stein, R. S. (2004b). Stress triggering in thrust and subduction earthquakes, and stress interaction between the southern San Andreas and nearby thrust and strike-slip faults. Journal of Geophysical Research, 109, B02303.

    Article  Google Scholar 

  • Loveless, J. P., Allmendinger, R. W., Pritchard, M. E., & González, G. (2010). Normal and reverse faulting driven by the subduction zone earthquake cycle in the northern Chilean fore arc. Tectonics, 29(2), TC2001. https://doi.org/10.1029/2009tc002465.

    Article  Google Scholar 

  • Lyon-Caen, H., Barrier, E., Lasserre, C., Franco, A., Arzu, I., Chiquin, L., et al. (2006). Kinematics of the North American–Caribbean-Cocos plates in Central America from new GPS measurements across the Polochic-Motagua fault system. Geophysical Research Letters, 33, L19309. https://doi.org/10.1029/2006GL027694.

    Article  Google Scholar 

  • Manea, M., Manea, V. C., Kostoglodov, V., & Guzmán-Speziale, M. (2005). Elastic thickness of the oceanic lithosphere beneath Tehuantepec ridge. Geofísica Internacional, 44(2), 157–168.

    Google Scholar 

  • Meade, C., & Jeanloz, R. (1991). Deep focus earthquakes and recycling of water into the Earth’s mantle. Science, 252, 68–72.

    Article  Google Scholar 

  • Melgar, D. (2009). El proceso de subducción en la zona del Istmo de Tehuantepec a partir de funciones receptor. UNAM: Tesis de Ingeniería.

    Google Scholar 

  • Mendoza, C., Hartzell, S., & Monfret, T. (1994). Wide band analysis of the 3 March 1985 central Chile earthquake: overall source process and rupture history. Bulletin of the Seismological Society of America, 84, 269–283.

    Google Scholar 

  • Menke, W. (1984). Geophysical data analysis: Discrete inverse theory (p. 260). Cambridge: Academic Press Inc.

    Google Scholar 

  • Metois, M., Vigny, C., & Socquet, A. (2016a). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18°S). Pure and Applied Geophysics. https://doi.org/10.1007/s00024-016-1280-5. (in press).

    Google Scholar 

  • Metois, M., Vigny, C., & Socquet, A. (2016b). Interseismic coupling, megathrust earthquakes and seismic swarms along the Chilean subduction zone (38°–18°S). Pure and Applied Geophysics. https://doi.org/10.1007/s00024-016-1280-5. (in press).

    Google Scholar 

  • Müller, R. D., Sdrolias, M., Gaina, C., & Roest, W. R. (2008). Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochemistry, Geophysics, Geosystems, 9, 1–19.

    Article  Google Scholar 

  • Nishenko, S. P. (1991). Circum-Pacific seismic potential: 1989–1999. Pure and Applied Geophysics, 135, 169–259.

    Article  Google Scholar 

  • Pacheco, J., & Sykes, L. R. (1992). Seismic moment catalog of large shallow earthquakes, 1900 to 1989. Bulletin of the Seismological Society of America, 82, 1306–1349.

    Google Scholar 

  • Parsons, T., Stein, R. S., Simpson, R. W., & Reasenberg, P. A. (1999). Stress sensitivity of fault seismicity: A comparison between limited-offset oblique and major strike-slip faults. Journal of Geophysical Research, 104, 20183–20202.

    Article  Google Scholar 

  • Pérez-Campos, X., Kim, Y., Husker, A., Davis, P., Clayton, R., Iglesias, A., et al. (2008). Horizontal subduction and truncation of the Cocos Plate beneath central Mexico. JGR. https://doi.org/10.1029/2008gl035127.

    Google Scholar 

  • Pilkington, M. (1997). 3-D magnetic imaging using conjugate gradients. Geophysics, 62, 1132–1142.

    Article  Google Scholar 

  • Pollitz, F. F., Stein, R. S., Sevilgen, V., & Bürgmann, R. (2012). The 11 April 2012 M = 8.6 east Indian Ocean earthquake triggered large aftershocks worldwide. Nature. https://doi.org/10.1038/nature11504.

    Google Scholar 

  • Ponce, L., Gaulon, R., Suárez, G., & Lomas, E. (1992). Geometry and state of stress of the downgoing Cocos plate in the Isthmus of Tehuantepec, Mexico. Geophysical Research Letters, 19(8), 773–776.

    Article  Google Scholar 

  • Pritchard, M. E., Ji, C., & Simons, M. (2006). Distribution of slip from 11 M w > 6 earthquakes in the northern Chile subduction zone. Journal of Geophysical Research, 111, B10302. https://doi.org/10.1029/2005JB004013.

    Article  Google Scholar 

  • Radiguet, M., Perfettini, H., Cotte, N., Gualandi, A., Valette, B., Kostoglodov, V., et al. (2016). Triggering of the 2014 M 7.3 Papanoa earthquake by a slow slip event in Guerrero, Mexico M. Nature. https://doi.org/10.1038/ngeo2817.

    Google Scholar 

  • Ranero, C. R., Morgan, J. P., McIntosh, K., & Reichert, C. (2003). Bending-related faulting and mantle serpentinization at the Middle America trench. Nature, 425, 367–373.

    Article  Google Scholar 

  • Ranero, C. R., Villasenor, A., Morgan, J. P., & Weinrebe, W. (2005). Relationship between bend-faulting at trenches and intermediate-depth seismicity. Geochemistry, Geophysics, Geosystems, 6(12), Q12002.

    Article  Google Scholar 

  • Rebollar, C., Espíndola, V., Uribe, A., Mendoza, A., & Pérez-Vertti, A. (1999). Distributions of stresses and geometry of the Wadati-Benioff zone under Chiapas, Mexico. Geofísica Internacional, 38(2), 95–106.

    Google Scholar 

  • Richardson, R., & Solomon, S. (1977). Apparent Stress and Stress Drop for Intraplate Earthquakes Tectonic Stress in the Plates. Pure and Applied Geophysics, 115(1–2), 317–331. https://doi.org/10.1007/BF01637112.

    Article  Google Scholar 

  • Rietbrock, A., Ryder, I., Hayes, G., Haberland, C., Comte, D., Roecker, S., et al. (2012). Aftershock seismicity of the 2010 Maule M w = 8.8, Chile, earthquake: correlation between co-seismic slip models and aftershock distribution? Geophysical Research Letters, 39, 8310. https://doi.org/10.1029/2012gl051308.

    Article  Google Scholar 

  • Rodriguez-Péres, Q., & Ottomöller, L. (2013). 2013 Finite-fault scaling relations in Mexico. Geophysical Journal International, 193, 1570–1588. https://doi.org/10.1093/gji/ggt050.

    Article  Google Scholar 

  • Ryder, I., Rietbrock, A., Kelson, K., Burgmann, R., Floyd, M., Socquet, A., et al. (2012). Large extensional aftershocks in the continental forearc triggered by the 2010 Maule earthquake, Chile. Geophysical Journal International, 188, 879–890. https://doi.org/10.1111/j.1365-246X.2011.05321.x.

    Article  Google Scholar 

  • Singh, S. K., Astiz, L., & Havskov, J. (1981). Seismic gaps and recurrence periods of large earthquakes along the Mexican subduction zone. Geophysical Research Letters, 9, 633–636.

    Article  Google Scholar 

  • Singh, S. K., Suárez, G., & Domínguez, T. (1985). The Oaxaca, Mexico, earthquake of 1931: lithospheric normal faulting in the subducted Cocos plate. Nature, 317(6032), 56–58. https://doi.org/10.1038/317056a0.

    Article  Google Scholar 

  • Song, T. R., & Simons, M. (2003). Large trench-parallel gravity variations predict seismogenic behavior in subduction zones. Science, 301, 630–633.

    Article  Google Scholar 

  • Spagnotto, S., Triep, E., Giambiagi, L., & Lupari, M. (2015a). Triggered seismicity in the Andean arc region via static stress variation by the M w = 8.8, February 27, 2010, Maule earthquake. Journal of South American Earth Sciences, 63, 36–47. https://doi.org/10.1016/j.jsames.2015.06.009.

    Article  Google Scholar 

  • Spagnotto, S., Triep, E., Giambiagi, L., Nacif, S., & Álvarez, O. (2015b). New evidences of rupture of crust and mantle in the subducted Nazca plate at intermediate-depth. Journal of South American Earth Sciences, 58, 141–147. https://doi.org/10.1016/j.jsames.2014.12.002. (ISSN: 0895-9811).

    Article  Google Scholar 

  • Toda, S., & Stein, R. S. (2013). The 2011 M = 9.0 Tohoku oki earthquake more than doubled the probability of large shocks beneath Tokyo. Geophysical Research Letters, 40, 1–5. https://doi.org/10.1002/grl.50524.

    Article  Google Scholar 

  • Toda, S., Stein, R., Richards-Dinger, K., & Bozkurt, S. (2005). Forecasting the evolution of seismicity in southern California: animations built on earthquake stress transfer. Journal of Geophysical Research, 110(B5), B05S16.

    Article  Google Scholar 

  • Uieda, L., Barbosa, V. C., & Braitenberg, C. F. (2016). Tesseroids: forward modeling gravitational fields in spherical coordinates. Geophysics, 81(5), F41–F48. https://doi.org/10.1190/GEO2015-0204.1.

    Article  Google Scholar 

  • Uieda, L., Ussami, N., Braitenberg, C.F. (2010). Computation of the gravity gradient tensor due to topographic masses using tesseroids. In: Eos Transactions AGU, v.91, n.26, Meeting of the Americas Supplement, abstract G22A-04, 2010. Washington: American Geophysical Union. http://code.google.com/p/tesseroids/.

  • Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W., & Dinterman, P. A. (2003a). Basin centered asperities in great subduction zone earthquakes: A link between slip, subsidence and subduction erosion? Journal of Geophysical Research, 108(B10), 2507–2536. https://doi.org/10.1029/2002JB002072.

    Article  Google Scholar 

  • Wells, R. E., Blakely, R. J., Sugiyama, Y., Scholl, D. W., & Dinterman, P. A. (2003b). Basin centered asperities in great subduction zone earthquakes: a link between slip, subsidence and subduction erosion? Journal of Geophysical Research, 108(B10), 2507–2536. https://doi.org/10.1029/2002JB002072.

    Article  Google Scholar 

  • Whittaker, J., Goncharov, A., Williams, S., Müller, R. D., & Leitchenkov, G. (2013). Global sediment thickness dataset updated for the Australian–Antarctic Southern Ocean. Geochemistry Geophysics Geosystems, 14, 3297–3305. https://doi.org/10.1002/ggge.20181.

    Article  Google Scholar 

  • Wienecke, S., Braitenberg, C., & Goetze, H. J. (2007). A new analytical solution estimating the flexural rigidity in the Central Andes. Geophysics Journal International, 169, 789–794.

    Article  Google Scholar 

  • Wyss, M. (1970). Apparent Stresses of Earthquakes on Ridges compared to Apparent Stresses of Earthquakes in Trenches. Geophysical Journal International, 19, 479–484.

    Article  Google Scholar 

  • Ye, L., Lay, T., Bai, Y., Cheung, K. F., & Kanamori, H. (2017). The 2017 M w 8.2 Chiapas, Mexico, Earthquake: Energetic slab detachment. Geophysical Research Letters, 44(23), 11824–11832.

    Article  Google Scholar 

  • Zhdanov, M. S. (2002). Geophysical inverse theory and regularization problems, methods in geochemistry and geophysics (Vol. 36, p. 668). Amsterdam, New York, Tokyo: Elsevier Science.

    Google Scholar 

  • Zoback, M. D., & Zoback, M. L. (2002). Stress in the Earth’s lithosphere: Encyclopedia of physical science and technology (3rd ed., Vol. 16, pp. 143–154). Cambridge: Academic Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silvana Spagnotto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spagnotto, S., Alvarez, O. & Folguera, A. Static Stress Increase in the Outer Forearc Produced by MW 8.2 September 8, 2017 Mexico Earthquake and its Relation to the Gravity Signal. Pure Appl. Geophys. 175, 2575–2593 (2018). https://doi.org/10.1007/s00024-018-1962-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1962-2

Keywords

Navigation