Skip to main content
Log in

Evaluation of Track and Intensity Prediction of Tropical Cyclones Over North Indian Ocean Using NCUM Global Model

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The performance of the National Centre for Medium Range Weather Forecasting-UK Met office (NCUM) global model in prediction of tropical cyclones (TCs) over the North Indian Ocean (NIO) at 25-km resolution is evaluated on the basis of 43 forecasts for 11 TCs. For this purpose, the analyses are carried out based on (1) basins of formation, (2) straight-moving and recurving/looping TCs, and (3) TC intensity at model initialization. The overall performance of NCUM global model has been found reasonably well in predicting TCs over NIO basin as it demonstrates a good skill irrespective of the region of formation, nature of movement, and intensity. The model has reasonably well predicted the tracks of the TCs in maximum number of the IC runs at different stages of the storms. The mean Direct Position Errors (DPEs) (skill with reference to CLIPER model) over the NIO vary from 97 to 248 km (5–57%) for 12–72-h forecast lengths. The NCUM model is found to be more skillful for track prediction of TCs when initialized at the Severe Cyclone Stage rather than at the Cyclonic Stage or lower. Therefore, the DPEs are lesser with higher model ICs run in each TC case. The model is more capable to predict the landfall location than the landfall time of the storms. The results also show that, on average, forecast tracks as predicted by NCUM lie to the right (i.e., model shows eastward bias of the best-track position) in all simulations for all the basins. The analysis of Along-Track errors reveals that the model forecast positions are biased to the south of (behind) the observed positions. It is evident that the NCUM forecasts are slower relative to the actual translation speed of the system for all forecast lengths, and the NCUM model predicts a delayed landfall. It is observed that the NCUM model has less predictability of intensity prediction of intense storms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Aberson, S. D., & Franklin, J. L. (1999). Impact on hurricane track and intensity forecasts of GPS dropwindsonde observations from the first-season flights of the NOAA Gulfstream-IV jet aircraft. Bulletin of the American Meteorological Society, 80(3), 421–427.

    Article  Google Scholar 

  • Aberson, S. D., Majumdar, S. J., Reynolds, C. A., & Etherton, B. J. (2011). An observing system experiment for tropical cyclone targeting techniques using the Global Forecast System. Monthly Weather Review, 139, 895–907.

    Article  Google Scholar 

  • Aksoy, A., Aberson, S. D., Vukicevic, T., Sellwood, K. J., Lorsolo, S., & Zhang, X. (2013). Assimilation of high-resolution tropical cyclone observations with an ensemble Kalman filter using NOAA/AOML/HRD’s HEDAS: evaluation of the 2008–11 vortex-scale analyses. Monthly Weather Review, 141(6), 1842–1865.

    Article  Google Scholar 

  • Bandyopadhyay, B. K., & Singh, Charan. (2006). Cyclone track forecast by combining persistence, climatology and synoptic method. Mausam, 57, 619–628.

    Google Scholar 

  • Bender, M. A., Ginis, I., Tuleya, R. E., Thomas, B., & Marchok, T. (2007). The operational GFDL coupled hurricane-ocean Prediction System and a summary of its performance. Monthly Weather Review, 135, 3965–3989.

    Article  Google Scholar 

  • Bhaskar Rao, D. V., & Ashok, K. (2001). Simulation of tropical cyclone circulation over the Bay of Bengal using the Arakawa-Schubert cumulus parameterization. Part II: some sensitivity experiments. Pure and Applied Geophysics, 158(5–6), 1017–1046.

    Article  Google Scholar 

  • Bhaskar Rao, D. V., HariPrasad, D., & Srinivas, D. (2009). Impact of horizontal resolution and the advantages of the nested domains approach in the prediction of tropical cyclone intensification and movement. Journal of Geophysical Research, 114, D11106. https://doi.org/10.1029/2008JD011623.

    Article  Google Scholar 

  • Buckingham, C., Marchok, T., Ginis, I., Rothstein, L., & Rowe, D. (2010). Short-and medium-range prediction of tropical and transitioning cyclone tracks within the NCEP global ensemble forecasting system. Weather and Forecasting, 25(6), 1736–1754.

    Article  Google Scholar 

  • Carr, L. E., & Elsberry, R. L. (2000). Dynamical tropical cyclone track forecast errors. Part II: midlatitude circulation influences. Weather Forecasting, 15, 662–681.

    Article  Google Scholar 

  • Chen, T. C., Wang, S. Y., Yen, M. C., & Clark, A. J. (2009). Impact of the intraseasonal variability of the western North Pacific large-scale circulation on tropical cyclone tracks. Weather Forecasting, 24, 646–666.

    Article  Google Scholar 

  • Cullen, M. J. P., Davies, T., Mawson, M. H., James, J. A., Coulter, S. C., & Malcolm, A. (1997). An overview of numerical methods for the next generation UK NWP and climate model. Atmosphere-Ocean, 35(sup1), 425–444.

    Article  Google Scholar 

  • Davidson, N. E., Xiao, Y., Ma, Y., Weber, H. C., Sun, X., Rikus, L. J., et al. (2014). ACCESS–TC: vortex specification, 4DVAR initialization, verification, and structure diagnostics. Monthly Weather Review, 142(3), 1265–1289.

    Article  Google Scholar 

  • Davies, T., Cullen, M. J. P., Malcolm, A. J., Mawson, M. H., Staniforth, A., White, A. A., et al. (2005). A new dynamical core for the Met Office’s global and regional modelling of the atmosphere. Quarterly Journal of the Royal Meteorological Society, 131(608), 1759–1782.

    Article  Google Scholar 

  • Davis, C., Wang, W., Dudhia, J., & Torn, R. (2010). Does increased horizontal resolution improve hurricane wind forecasts? Weather and Forecasting, 25, 1826–1841.

    Article  Google Scholar 

  • Elsberry, R. L., Clune, W. M., Elliott, G., & Harr, P. A. (2009). Evaluation of global model early track and formation predictions during the combined TCS08 and T-PARC field experiment. Asia-Pacific Journal of Atmospheric Sciences, 45, 357–374.

    Google Scholar 

  • Elsberry, R. L., Jordan, M. S., & Vitart, F. (2010). Predictability of tropical cyclone events on intraseasonal timescales with the ECMWF monthly forecast model. Asia-Pacific Journal of Atmospheric Sciences, 46, 135–153.

    Article  Google Scholar 

  • Elsberry, R. L., Lambert, T. D., & Boothe, M. A. (2007). Accuracy of Atlantic and eastern North Pacific tropical cyclone intensity forecast guidance. Weather and Forecasting, 22(4), 747–762.

    Article  Google Scholar 

  • Emanuel, K., & Zhang, F. (2016). On the predictability and error sources of tropical cyclone intensity forecasts. Journal of Atmospheric Science, 73, 3739–3747.

    Article  Google Scholar 

  • Emanuel, K., & Zhang, F. (2017). The role of inner-core moisture in tropical cyclone predictability and practical forecast skill. Journal of Atmospheric Science, 74, 2315–2324.

    Article  Google Scholar 

  • Essery, R., Best, M. and Cox, P. (2001). MOSES 2.2 technical documentation (Vol. 30). Hadley Centre Technical Note. http://jules.jchmr.org/sites/default/files/HCTN_30.pdf

  • Froude, L. S., Bengtsson, L., & Hodges, K. I. (2007). The prediction of extratropical storm tracks by the ECMWF and NCEP ensemble prediction systems. Monthly Weather Review, 135, 2545–2567.

    Article  Google Scholar 

  • Gall, J. S., Ginis, I., Lin, S.-J., Marchok, T., & Chen, J.-H. (2011). Experimental tropical cyclone prediction using the GFDL 25 km resolution global atmospheric model. Weather and Forecasting, 26, 1008–1019.

    Article  Google Scholar 

  • Gentry, S. Megan, & Lackmann, Gray M. (2010). Sensitivity of simulated tropical cyclone structure and intensity to horizontal resolution. Monthly Weather Review, 138, 688–704.

    Article  Google Scholar 

  • Goerss, J. S., & Jeffries, R. A. (1994). Assimilation of synthetic tropical cyclone observations into the navy operational global atmospheric prediction system. Weather and Forecasting, 9, 557–576.

    Article  Google Scholar 

  • Goerss, J. S., Sampson, C. R., & Gross, J. (2004). A history of western North Pacific tropical cyclone track forecast skill. Weather and Forecasting, 19, 633–638.

    Article  Google Scholar 

  • Gopalakrishnan, S.G., Liu Q., Marchok T., Sheinin D., Surgi N., Tuleya R., Yablonsky R., & Zhang X. (2012). Hurricane Weather and Research and Forecasting (HWRF) model scientific documentation. L. Bernardet (Ed.), NOAA/ESRL Rep., pp. 96. http://www.dtcenter.org/HurrWRF/users/docs/scientific_documents/HWRFScientificDocumentation_v3.4a.pdf. Accessed 17 June 2018.

  • Gopalakrishnan, S. G., Goldenberg, S., Quirino, T., Zhang, X., Marks, F., Jr., Yeh, K. S., et al. (2012). Toward improving high-resolution numerical hurricane forecasting: influence of model horizontal grid resolution, initialization, and physics. Weather and Forecasting, 27, 647–666.

    Article  Google Scholar 

  • Gopalakrishnan, S. G., Marks, F., Jr., Zhang, J. A., Zhang, X., Bao, J.-W., & Tallapragada, V. (2013). A study of the impacts of vertical diffusion on the structure and intensity of the tropical cyclones using the high-resolution HWRF system. Journal of the Atmospheric Sciences, 70, 524–541.

    Article  Google Scholar 

  • Gopalakrishnan, S. G., Zhang, X., Bao, J.-W., Yeh, K.-S., & Atlas, R. (2011). The experimental HWRF system: a study on the influence of horizontal resolution on the structure and intensity changes in tropical cyclones using an idealized framework. Monthly Weather Review, 139, 1762–1784.

    Article  Google Scholar 

  • Goswami, P., Himesh, S., & Goud, B. S. (2010). Impact of urbanization on tropical mesoscale events: investigation of three heavy rainfall events. Meteorologische Zeitschrift, 19(4), 385–397.

    Article  Google Scholar 

  • Goswami, P., Mandal, A., Upadhyaya, H. C., & Hourdin, F. (2006). Advance forecasting of cyclone track over North Indian Ocean using a global circulation model. Mausam, 57, 111–118.

    Google Scholar 

  • Goswami, P., & Mohapatra, G. N. (2014). A comparative evaluation of impact of domain size and parameterization scheme on simulation of tropical cyclones in the Bay of Bengal. Journal of Geophysical Research: Atmospheres, 119, 10–22.

    Google Scholar 

  • Grant, A. L. M., & Brown, A. R. (1999). A similarity hypothesis for shallow-cumulus transports. Quarterly Journal of the Royal Meteorological Society, 125(558), 1913–1936.

    Article  Google Scholar 

  • Gregory, D., & Rowntree, P. R. (1990). A mass flux convection scheme with representation of cloud ensemble characteristics and stability-dependent closure. Monthly Weather Review, 118, 1483–1506.

    Article  Google Scholar 

  • Hanley, K. E., Plant, R. S., Stein, T. H., Hogan, R. J., Nicol, J. C., Lean, H. W., et al. (2015). Mixing-length controls on high-resolution simulations of convective storms. Quarterly Journal of the Royal Meteorological Society, 141, 272–284.

    Article  Google Scholar 

  • Harr, P. A., & Elsberry, R. L. (1991). Tropical cyclone track characteristics as a function of large-scale circulation anomalies. Monthly Weather Review, 119, 1448–1468.

    Article  Google Scholar 

  • Harr, P. A., & Elsberry, R. L. (1995). Large scale circulation variability over the tropical western north pacific. Part I: special pattern and tropical cyclone characteristics. Monthly Weather Review, 123, 1225–11246.

    Article  Google Scholar 

  • Heming, J. T., & Goerss J. (2010). Track and structure forecasts of tropical cyclones. Global Perspectives on Tropical Cyclones. https://doi.org/10.1142/9789814293488_0010.

    Google Scholar 

  • Heming, J. T., 2010. The impact of resolution on Met Office model predictions of tropical cyclone track and intensity. In: AMS 29th Conference on Hurricanes and Tropical Meteorology, Tucson, Arizona. https://ams.confex.com/ams/29Hurricanes/techprogram/programexpanded_608.htm.

  • Heming, J. T., Chan, J. C. L., & Radford, A. M. (1995). A new scheme for the initialisation of tropical cyclones in the UK Meteorological Office global model. Meteorological Applications, 2, 171–184.

    Article  Google Scholar 

  • Heming, J. T., & Greed, G. (2002). The Met Office 2002 global model upgrade and the expected impact on tropical cyclone forecasts. American meteorological society 25th conference on hurricanes and tropical meteorology, San Diego (pp. 180–181). Boston: CA. American Meteorological Society.

    Google Scholar 

  • India Meteorological Department (2011). Tracks of cyclones and depressions over North Indian Ocean. Technical Note, p. 48. http://www.rmcchennaieatlas.tn.nic.in/Help/TechNote2011.pdf.

  • Knapp, K. R., & Kruk, M. C. (2010). Quantifying interagency differences in tropical cyclone best-track wind speed estimates. Monthly Weather Review, 138, 1459–1473.

    Article  Google Scholar 

  • Kumkar, Yogesh V., Sen, P. N., Chaudhari, Hemankumar S., & Jai-Ho, Oh. (2018). Tropical cyclones over the North Indian Ocean: experiments with the high-resolution global icosahedral grid point model GME. Meteorology and Atmospheric Physics, 130, 23–37.

    Article  Google Scholar 

  • Kurihara, Y., Tuleya, R. E., & Bender, M. A. (1998). The GFDL hurricane prediction system and its performance in the 1995 hurricane season. Monthly Weather Review, 126, 1306–1322.

    Article  Google Scholar 

  • Levinson, D. H., Diamond, H. J., Knapp, K. R., Kruk, M. C., & Gibney, E. J. (2010). Toward a homogenous global tropical cyclone best-track dataset. Bulletin of the American Meteorological Society, 91, 377–380.

    Article  Google Scholar 

  • Lock, A. P., Brown, A. R., Bush, M. R., Martin, G. M., & Smith, R. N. B. (2000). A new boundary layer mixing scheme. Part I: scheme description and single-column model tests. Monthly Weather Review, 128, 3187–3199.

    Article  Google Scholar 

  • Marchok, T.P., 2002, April. How the NCEP tropical cyclone tracker works. In: Preprints, 25th Conf. on Hurricanes and Tropical Meteorology, San Diego, CA, Amer. Meteor. Soc. P (Vol. 1). https://ams.confex.com/ams/25HURR/techprogram/paper_37628.htm.

  • Martin, G. M., Bush, M. R., Brown, A. R., Lock, A. P., & Smith, R. N. B. (2000). A new boundary layer mixing scheme. Part II: tests in climate and mesoscale models. Monthly Weather Review, 128(9), 3200–3217.

    Article  Google Scholar 

  • Mohanty, U. C., Osuri, Krishna K., Routray, A., Mohapatra, M., & Pattanayak, Sujata. (2010). Simulation of Bay of Bengal tropical cyclones with WRF model: impact of initial and boundary conditions. Marine Geodesy, 33, 294–314.

    Article  Google Scholar 

  • Mohapatra, M., Bandyopadhyay, B. K., & Ajit, Tyagi. (2012). Best track parameters of tropical cyclones over the North Indian ocean: a review. Natural Hazards, 63, 1285–1317.

    Article  Google Scholar 

  • Mohapatra, M., Bandyopadhyay, B. K., & Nayak, D. P. (2013a). Evaluation of operational tropical cyclone intensity forecasts over north Indian Ocean issued by India meteorological department. Natural Hazards, 68, 433–451.

    Article  Google Scholar 

  • Mohapatra, M., Nayak, D. P., Sharma, R. P., & Bandyopadhyay, B. K. (2013b). Evaluation of official tropical cyclone track forecast over north Indian ocean issued by India meteorological department. Journal of Earth System Science, 122, 589–601.

    Article  Google Scholar 

  • Neumann, C. J., & Mandal, G. S. (1978). Statistical prediction of tropical storm motion over the Bay of Bengal and Arabian Sea. Indian J. Meteorol. Hydrol. Geophys, 29, 487–500.

    Google Scholar 

  • Osuri, K. K., Mohanty, U. C., Routray, A., Mohapatra, M., & Niyogi, D. (2013). Real-time track prediction of tropical cyclones over the North Indian Ocean using the ARW model. Journal of Applied Meteorology and Climatology, 52(11), 2476–2492.

    Article  Google Scholar 

  • Osuri, K. K., Mohanty, U. C., Routray, A., & Niyogi, D. (2015). Improved prediction of Bay of Bengal tropical cyclones through assimilation of doppler weather radar observations. Monthly Weather Review, 143(11), 4533–4560.

    Article  Google Scholar 

  • Osuri, K. K., Nadimpalli, R., Mohanty, U. C., & Niyogi, D. (2017). Prediction of rapid intensification of tropical cyclone phailin over the Bay of Bengal using the HWRF modeling system. Q. J. Roy. Meteorol. Soc., 143, 678–690.

    Article  Google Scholar 

  • Pielke, R. A., Sr. (2002). Mesoscale meteorological modeling (p. 676). San Diego: Academic Press.

    Google Scholar 

  • Pike, A. C., & Neumann, C. J. (1987). The variation of track forecast difficulty among tropical cyclone basins. Weather and Forecasting, 2(3), 237–241.

    Article  Google Scholar 

  • Raghavan, S., & Sen Sarma, A. K. (2000). Tropical cyclone impacts in India and neighbourhood. Storms, 1, 339–356.

    Google Scholar 

  • Rajagopal, E. N., Iyengar, G. R., George, J. P., Gupta, M. D., Mohandas, S., Siddharth, R., Gupta, A., Chourasia, M., Prasad, V. S., Aditi, K. S. and Ashish, A., (2012). Implementation of unified model based analysis-forecast system at NCMRWF. NCMRWF Technical Report No. NMRF/TR/2/2012, pp. 1–46. http://www.ncmrwf.gov.in/UM_OPS_VAR_Report.pdf.

  • Ramarao, Y. V., Hatwar, H. R., & Agnihotri, G. (2006). Tropical cyclone prediction by numerical models in India meteorological department. Mausam, 57, 47–60.

    Google Scholar 

  • Regional Specialized Meteorological Centre (RSMC), Cyclone Warning Division, India Meteorological department, India. (2014). Report on cyclonic disturbances over North Indian Ocean during 2013. Retrieved from http://www.rsmcnewdelhi.imd.gov.in/images/pdf/publications/annual-rsmc-report/rsmc-2013.pdf. Accessed 17 June 2018.

  • Routray, A., Kar, S. C., Mali, P., & Sowjanya, K. (2014). Simulation of monsoon depressions using WRF-VAR: impact of different background error statistics and lateral boundary conditions. Monthly Weather Review, 142(10), 3586–3613.

    Article  Google Scholar 

  • Routray, A., Mohanty, U. C., Osuri, K. K., Kar, S. C., & Niyogi, D. (2016). Impact of satellite radiance data on simulations of Bay of Bengal tropical cyclones using the WRF-3DVAR modeling system. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2285–2303.

    Article  Google Scholar 

  • Routray, A., Singh, V., George J. P., Mohandas, S., and Rajagopal, E. N. (2017). Simulation of tropical cyclones over Bay of Bengal with NCMRWF regional unified model. Pure and Applied Geophysics, 174, 1101–1119.

    Article  Google Scholar 

  • Ryerson, W. R. (2006). Evaluation of the AFWA WRF 4-km moving nest model predictions for Western North Pacific tropical cyclones (doctoral dissertation. Naval Postgraduate School): Monterey California.

    Google Scholar 

  • Tallapragada, V., Kieu, C., Kwon, Y., Trahan, S., Liu, Q.-F., Zhang, Z., et al. (2014). Evaluation of storm structure from the operational HWRF model during 2012 implementation. Monthly Weather Review, 142, 4308–4325.

    Article  Google Scholar 

  • Vitart, F., Leroy, A., & Wheeler, M. C. (2010). A comparison of dynamical and statistical predictions of weekly tropical cyclone activity in the Southern Hemisphere. Monthly Weather Review, 138, 3671–3682.

    Article  Google Scholar 

  • Waldron, K. M., Peagle, J., & Horel, J. D. (1996). Sensitivity of a spectrally filtered and nudged limited-area model to outer model options. Monthly Weather Review, 124, 529–547.

    Article  Google Scholar 

  • Wilson, D. R., & Ballard, S. P. (1999). A microphysically based precipitation scheme for the UK Meteorological Office Unified Model. Quarterly Journal of the Royal Meteorological Society, 125, 1607–1636.

    Article  Google Scholar 

  • World Meteorological Organization (WMO) 2009. Standard format for verification of TC forecast. TCM-6, pp 83. https://www.wmo.int/pages/prog/www/tcp/documents/TCM6-FinalReport.pdf. Accessed 17 June 2018.

  • Wu, L., Wang, B., & Geng, S. (2005). Growing typhoon influence on East Asia. Geophysical Research Letters, 32, L18703. https://doi.org/10.1029/2005GL022937.

    Google Scholar 

  • Xiao, Q., Zou, X., & Wang, B. (2000). Initialization and simulation of a landfalling hurricane using a variational bogus data assimilation scheme. Monthly Weather Review, 128, 2252–2269.

    Article  Google Scholar 

  • Zhang, W., Leung, Yee, & Chan, Johnny C. L. (2013). The analysis of tropical cyclone tracks in the Western North Pacific through data mining. Part I: tropical cyclone recurvature. Journal of Applied Meteorology and Climatology, 52, 1394–1416.

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the IMD for providing the best-tracks and CLIPER model data of the TCs which is used in the present study to validate the model simulations. The authors gratefully acknowledge Dr. M. Mohapatra, Scientist-G, IMD, New Delhi for his immense help in clarifying the doubts throughout the research period. The authors also thank the scientists from UK Met Office. We express our sincere thanks to anonymous reviewers for their valuable comments and suggestions for improvement of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashish Routray.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Routray, A., Dutta, D. & George, J.P. Evaluation of Track and Intensity Prediction of Tropical Cyclones Over North Indian Ocean Using NCUM Global Model. Pure Appl. Geophys. 176, 421–440 (2019). https://doi.org/10.1007/s00024-018-1924-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-018-1924-8

Keywords

Navigation