Skip to main content
Log in

Impact of Assimilation of Conventional and Satellite Radiance GTS Observations on Simulation of Mesoscale Convective System Over Southeast India Using WRF-3DVar

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The primary goal of present study is to investigate the impact of assimilation of conventional and satellite radiance observations in simulating the mesoscale convective system (MCS) formed over south east India. An assimilation methodology based on Weather Research and Forecasting model three dimensional variational data assimilation is considered. Few numerical experiments are carried out to examine the individual and combined impact of conventional and non-conventional (satellite radiance) observations. After the successful inclusion of additional observations, strong analysis increments of temperature and moisture fields are noticed and contributed to significant improvement in model’s initial fields. The resulting model simulations are able to successfully reproduce the prominent synoptic features responsible for the initiation of MCS. Among all the experiments, the final experiment in which both conventional and satellite radiance observations assimilated has showed considerable impact on the prediction of MCS. The location, genesis, intensity, propagation and development of rain bands associated with the MCS are simulated reasonably well. The biases of simulated temperature, moisture and wind fields at surface and different pressure levels are reduced. Thermodynamic, dynamic and vertical structure of convective cells associated with the passage of MCS are well captured. Spatial distribution of rainfall is fairly reproduced and comparable to TRMM observations. It is demonstrated that incorporation of conventional and satellite radiance observations improved the local and synoptic representation of temperature, moisture fields from surface to different levels of atmosphere. This study highlights the importance of assimilation of conventional and satellite radiances in improving the models initial conditions and simulation of MCS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Abhilash, S., Das, S., Kalsi, S. R., Gupta, M. D., Mohankumar, K., George, J. P., et al. (2007). Impact of Doppler radar wind in simulating the intensity and propagation of rainbands associated with mesoscale convective complexes using MM5-3DVAR system. Pure and Applied Geophysics, 164, 1–19.

    Article  Google Scholar 

  • Abhilash, S., Sahai, A. K., Mohankumar, K., George, J. P., & Das, S. (2012). Assimilation of Doppler Weather Radar Radial Velocity and Reflectivity Observations in WRF-3DVAR System for Short-Range Forecasting of Convective Storms. Pure and Applied Geophysics, 169, 2047–2070.

    Article  Google Scholar 

  • Ahasan, M. N., & Debsarma, S. K. (2015). Impact of data assimilation in simulation of thunderstorm (squall line) event over Bangladesh using WRF model, during SAARC-STORM Pilot Field Experiment 2011. Nat Haz., 75, 1009–1022.

    Article  Google Scholar 

  • Barker, D.M., Huang, W., Guo, Y.R., & Bourgeois, A. (2003), A three-dimensional variational (3DVAR) data assimilation system for use with MM5, NCAR Tech Note. 68.

  • Barker, D. M., Huang, W., Guo, Y. R., Bourgeois, A., & Xiao, Q. N. (2004). A three-dimensional variational data assimilation system for MM5: implementation and initial results. Monthly Weather Review, 132, 897–914.

    Article  Google Scholar 

  • Barker, D., Huang, X. Y., Liu, Z., Auligné, T., Zhang, X., Rugg, S., et al. (2012). The weather research and forecasting model’s community variational/ensemble data assimilation system: WRFDA. Bulletin of the American Meteorological Society, 93, 831–843.

    Article  Google Scholar 

  • Betts, A. K., & Miller, M. J. (1986). A new convective adjustment scheme. Part II: Single column tests using GATE wave, BOMEX, ATEX and arctic airmass data sets. Quarterly Journal of the Royal Meteorological Society, 112, 693–709.

    Google Scholar 

  • Chang, H. I., Kumar, A., Niyogi, D., Mohanty, U. C., Chen, F., & Dudhia, J. (2009). The role of land surface processes on the mesoscale simulation of the July 26, 2005 heavy rain event over Mumbai, India. Global and Planetary Change, 67, 87–103.

    Article  Google Scholar 

  • Chen, S. H. (2007). The impact of assimilating SSM/I and QuikSCAT satellite winds on Hurricane Isidore simulation. Monthly Weather Review, 135, 549–566.

    Article  Google Scholar 

  • Chen, C. Y., Chen, Y. L., & Nguyen, H. V. (2014). The spin-up process of a cyclone vortex in a tropical cyclone initialization scheme and its impact on the initial TC structure. SOLA., 10, 93–97.

    Article  Google Scholar 

  • Chou, S.H., Zavodsky, B., Jedlovec, G., & Lapenta, W. (2006), Assimilation of Atmospheric Infrared Sounder (AIRS) data in a regional model. In:Proceedings of the 14th conference on satellite meteorology and oceanography, CD-ROM, P5.12. Atlanta: American Meteorological Society (http://ams.confex.com/ams/pdfpapers/103317.pdf).

  • Daley, R. (1991). Atmospheric Data Analysis, Cambridge Atmospheric and Space Science Series (p. 457). Cambridge: Cambridge University Press.

    Google Scholar 

  • Das, S., Abhilash, S., Das Gupta, M., George, J.P., Kalsi, S.R., Banerjee, S.K., Thampi, S.B., Pradhan, D., & Mohankumar, K. (2006), Assimilation of Doppler weather radar wind in a mesoscale model and their impact on simulation of thunderstorms and severe weather systems. Report no. NMRF/RR/01/2006, 120 pp (pp. 201–307). NCMRWF, A-50, Sector-62, Noida.

  • Das, M. K., Chowdhury, M. A. M., Das, S., Debsarma, S. K., & Karmakar, S. (2015). Assimilation of Doppler weather radar data and their impacts on the simulation of squall events during pre-monsoon season. Natural Hazards, 77, 901–931.

    Article  Google Scholar 

  • Deb, S. K., Kishtawal, C. M., & Pal, P. K. (2010). Impact of Kalpana-1-derived water vapor winds on Indian Ocean tropical cyclones forecast. Monthly Weather Review, 138, 987–1003.

    Article  Google Scholar 

  • Derber, J. C., & Wu, W.-S. (1998). The use of TOVS cloud-cleared radiances in the NCEP SSI analysis system. Monthly Weather Review, 126, 2287–2299

    Article  Google Scholar 

  • Doyle, J. D., & Warner, T. T. (1988). Verification of mesoscale objective analyses of VAS and rawinsonde data using the March 1982 AVE/VAS Special Network Data. Monthly Weather Review, 116, 358–367.

    Article  Google Scholar 

  • Dudhia, J. (1989). Numerical study of convection observed during the winter monsoon experiment using a mesoscale two-dimensional model. Journal of Atmospheric Science, 46, 3077–3107.

    Article  Google Scholar 

  • Govindankutty, M., Chandrasekhar, A., Bohra, A. K., George, J. P., & Das Gupta, M. (2008). The Impact of assimilation of MODIS observations Using WRF-VAR for the Prediction of a monsoon depression during September 2006. Open Atmospheric Science Journal, 2, 68–78.

    Article  Google Scholar 

  • Hatwar, H. R., Rama Rao, Y. V., Roy Bhowmik, S. K., & Joardar, D. (2005). An impact of ARMEX data on limited area model analysis and forecast system of India Meteorological Department—a preliminary study. Mausam, 56, 131–138.

    Google Scholar 

  • Huffman, G. J., Alder, R. F., Bolvin, D., Gu, G., Nelkin, E. J., Bowman, K. P., et al. (2007). The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor, precipitation estimates at fine scales. Journal of Hydrometeorology, 8, 38–55.

    Article  Google Scholar 

  • Kalnay, E. (2003). Atmospheric modeling, data assimilation and predictability. Cambridge: Cambridge University Press.

    Google Scholar 

  • Kistler, R., Collins, W., Saha, S., White, G., Woollen, J., Kalnay, E., et al. (2001). The NCEP-NCAR 50-year reanalysis: Monthly means CD-ROM and documentation. Bulletin of the American Meteorological Society, 82, 247–267.

    Article  Google Scholar 

  • Lipton, A. E., & Vonder Haar, T. H. (1990). Mesoscale analysis by numerical modeling coupled with sounding retrieval from satellites. Monthly Weather Review, 118, 1308–1329.

    Article  Google Scholar 

  • Lorenc, A. C., Ballard, S. P., Bell, R. S., Ingleby, N. B., Andrews, P. L. F., Barker, D. M., et al. (2000). The Met. Office Global three dimensional variational data assimilation scheme. Quarterly Journal of the Royal Meteorological Society, 126, 2991–3012.

    Article  Google Scholar 

  • Madhulatha, A., George, J. P., & Rajagopal, E. N. (2017). All sky radiance Simulation of Megha-Tropiques SAPHIR microwave sensor using multiple scattering radiative transfer model for data assimilation applications. Journal of Earth System Science, 126, 24. doi:10.1007/s12040-017-0805-3.

    Article  Google Scholar 

  • Madhulatha, A., & Rajeevan, M. (2017). Impact of different parameterization schemes on simulation of mesoscale convective system over south-east India. Meteor: Meteorology and Atmospheric. doi:10.1007/s00703-017-0502-4.

    Google Scholar 

  • Madhulatha, A., Rajeevan, M., Ratnam, M. V., Bhate, J. N., & Naidu, C. V. (2013). Nowcasting severe convective activity over South-east India using ground-based microwave radiometer observations. Journal of Geophysical Research. doi:10.1029/2012JD018174.

    Google Scholar 

  • Mellor, G. L., & Yamada, T. (1982). Development of a turbulence closure model for geophysical fluid problems. Reviews of Geophysics and Space Physics, 20, 851–875.

    Article  Google Scholar 

  • Mlawer, E. J., Taubman, S. J., Brown, P. D., Iacono, M. J., & Clough, S. A. (1997). Radiative transfer for inhomogeneous atmosphere: RRTM, a validated correlated-k model for the longwave. Journal of Geophysical Research, 102(D14), 16663–16682.

    Article  Google Scholar 

  • Mohanty, U. C., Routray, A., Krishna, O. K., & Prasad, S. K. (2011). A Study on Simulation of Heavy Rainfall Events over Indian Region with ARW-3DVAR Modeling System. Pure and Applied Geophysics. doi:10.1007/s00024-011-0376-1.

    Google Scholar 

  • Niyogi, D., Holt, T., Zhong, S., Pyle, P. C., & Basara, J. (2006). Urban and land surface effects on the 30 July 2003 mesoscale convective system event observed in the southern Great Plains. Journal of Geophysical Research, 111, D19107. doi:10.1029/2005JD006746.

    Article  Google Scholar 

  • Parrish, David F., & Derber, J. C. (1992). The National Meteorological Center’s spectral statistical-interpolation analysis system. Monthly Weather Review, 120, 1747–1763.

    Article  Google Scholar 

  • Powers, G. J. (2007). Numerical prediction of an Antarctic severe wind event with the weather research and forecasting (WRF) model. Monthly Weather Review, 135, 3134–3157.

    Article  Google Scholar 

  • Pu, Z., Tao, W. K., Braun, S., Simpson, J., Jia, Y., Halverson, J., et al. (2002). The impact of TRMM data on mesoscale numerical simulation of Super typhoon Paka. Monthly Weather Review, 130, 2248–2258.

    Article  Google Scholar 

  • Rabier, F., McNally, A., Andersson, E., Courtier, P., Unden, P., Eyre, J., et al. (1998). The ECMWF implementation of three dimensional varaitional assimilation (3D-Var). Part II: Structure functions. Quarterly Journal of the Royal Meteorological Society, 124, 1809–1829.

    Article  Google Scholar 

  • Raju, A., Parekh, A., Kumar, P., & Gnanaseelan, C. (2015). Evaluation of the impact of AIRS profiles on prediction of Indian summer monsoon using WRF variational data assimilation system. Journal of Geophysical Research Atmospheres, 12016, 8112–8131.

    Article  Google Scholar 

  • Rakesh, V., & Goswami, P. (2011a). Impact of background error statistics on forecasting of tropical cyclones over the north Indian Ocean. Journal of Geophysical Research, 116, D20130. doi:10.1029/2011JD015751.

    Article  Google Scholar 

  • Rakesh, V., & Goswami, P. (2011b). Impact of background error statistics on 3D-Var assimilation: case study over the Indian region. Meteorology and Atmospheric Physics, 112, 63–79.

    Article  Google Scholar 

  • Rakesh, V., & Kantharao, B. (2017). Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics. Pure and Applied Geophysics. doi:10.1007/s00024-017-1471-8.

    Google Scholar 

  • Rakesh, V., Singh, R., Pal, P. K., & Joshi, P. C. (2009). Impacts of satellite-observed winds and total precipitable water on WRF short-range forecasts over the Indian region during the 2006 summer monsoon. Weather and Forecasting, 24, 1706–1731.

    Article  Google Scholar 

  • Routray, A., Kar, S. C., Mali, P., & Sowjanya, K. (2014). Simulation of monsoon depressions using WRF-VAR: impact of different background error statistics and lateral boundary conditions. Monthly Weather Review, 142, 3586–3613.

    Article  Google Scholar 

  • Routray, A., Mohanty, U. C., Krishna, K. O., & Prasad, S. K. (2013). Improvement of Monsoon Depressions Forecast with Assimilation of Indian DWR Data Using WRF-3DVAR Analysis System. Pure and Applied Geophysics. doi:10.1007/s00024-013-0648-z.

    Google Scholar 

  • Routray, A., Mohanty, U. C., Niyogi, D., Rizvi, S. R. H., & Osuri, K. K. (2010). Simulation of heavy rainfall events over Indian monsoon region using WRF-3DVAR data assimilation system. Meteorology and Atmospheric Physics, 106, 107–125. doi:10.1007/s00703-009-0054-3.

    Article  Google Scholar 

  • Singh, R., Pal, P. K., Kishtawal, C. M., & Joshi, P. C. (2008a). The impact of variational assimilation of SSM/I and QuikSCAT satellite observations on the numerical simulation of Indian Ocean tropical cyclone. Weather and Forecasting, 23, 460–476.

    Article  Google Scholar 

  • Singh, R., Pal, P. K., Kishtawal, C. M., & Joshi, P. C. (2008b). Impact of atmospheric infrared sounder data on the numerical simulation of a historical Mumbai rain event. Weather and Forecasting, 23, 892–913.

    Google Scholar 

  • Skamarock, W.C., Klemp, J.B., Dudhia J., Gill D.O., Barker D.M., Duda M.G., Huang X.Y., Wang W., & Powers J.G. (2008), A description of the advanced research WRF Version 3, NCAR tech note NCAR/TN 475 STR, 125 pp. Available from: UCAR Communications, PO Box 3000.

  • Srivastava, K., Bhardwaj, R., & Roy Bhowmik, S. K. (2011). Assimilation of Indian Doppler Weather Radar Observations for simulation of mesoscale features of a land-falling cyclone. Natural Hazards, 58, 15–29.

    Article  Google Scholar 

  • Srivastava, K., Roy Bhowmik, S. K., Roy, S. S., Thampi, S. B., & Reddy, Y. K. (2010). Simulation of high impact convective events over Indian region by ARPS model with assimilation of Doppler weather radar radial velocity and reflectivity. Atmosfera, 23, 53–73.

    Google Scholar 

  • Sugimoto, S., Crook, N. A., Sun, J., Xiao, Q., & Barker, D. M. (2009). An examination of WRF 3DVAR radar data assimilation on its capability in retrieving unobserved variables and forecasting precipitation through observing system simulation experiments. Monthly Weather Review, 137, 4011–4029.

    Article  Google Scholar 

  • Thompson, G., Rasmussen, R. M., & Manning, K. (2004). Explicit forecasts of winter precipitation using an improved bulk microphysics scheme, Part I: Description and sensitivity analysis. Monthly Weather Review, 132, 519–542.

    Article  Google Scholar 

  • Vaidya, S. S., & Kulkarni, J. R. (2007). Simulation of heavy precipitation over Santacruz, Mumbai on 26 July 2005, using mesoscale model. Meteorology and Atmospheric Physics, 98, 55–66.

    Article  Google Scholar 

  • Xavier, V. F., Chandrasekar, A., Rahman, H., Niyogi, D., & Alapaty, K. (2008). The effect of assimilation of satellite and conventional meteorological data for the prediction of a monsoon depression over india using a mesoscale model. Meteorology and Atmospheric Physics. doi:10.1007/s00703-008-0314-7.

    Google Scholar 

  • Yu, X., & Lee, T. Y. (2010). Role of convective parameterization in simulations of a convection band at grey-zone resolutions. Tellus A, 62, 617–632. doi:10.1111/j.1600-0870.2010.00470.x.

    Article  Google Scholar 

  • Zavodsky, B. T., Lazarus, S. M., Blottman, P. F., & Sharp, D. W. (2004). Assimilation of MODIS temperature and water vapour profiles into a mesoscale analysis system, 20 th Conference on Weather Analysis and Forecasting/16 th Conference on Numerical Weather Prediction. Washington: American Meteorological Society.

    Google Scholar 

  • Zhang, F., Weng, Y., Sippel, J. A., Meng, Z., & Bishop, C. H. (2009). Cloud-resolving hurricane initialization and prediction through assimilation of Doppler radar observations with an ensemble Kalman filter. Monthly Weather Review, 137, 2105–2125.

    Article  Google Scholar 

  • Zou, X., & Xiao, Q. (2000). Studies on the initialization and simulation of a mature hurricane using a variational bogus data assimilation scheme. Journal of Atmospheric Science, 57, 836–860.

    Article  Google Scholar 

Download references

Acknowledgements

We would like to thank India Meteorological Department (IMD), Delhi for providing High Performance Computing facilities to carry out this work. WRF USERS page is greatly acknowledged for making WRF model freely accessible to the user community. Authors gratefully acknowledge Dr. A. Jayaraman, Director NARL for his support in providing necessary observations to carry out this work. Special thanks to Dr. S B Thampi, Doppler Weather Radar Division, India Meteorological Department (IMD), Chennai, India for providing necessary support in archiving the DWR data. The insitu observations and DWR data utilised in this study can be available on special request at http://www.narl.gov.in and http://www.imd.gov.in, respectively. We acknowledge NCEP for providing GFS analysis and GTS observations. GMAO and NASA GES DISC teams are acknowledged for MERRA and TRMM datasets. Authors are thankful to anonymous reviewers and editor for their constructive comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Madhulatha.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madhulatha, A., Rajeevan, M., Bhowmik, S.K.R. et al. Impact of Assimilation of Conventional and Satellite Radiance GTS Observations on Simulation of Mesoscale Convective System Over Southeast India Using WRF-3DVar. Pure Appl. Geophys. 175, 479–500 (2018). https://doi.org/10.1007/s00024-017-1689-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1689-5

Keywords

Navigation