Skip to main content
Log in

Pre-computed tsunami inundation database and forecast simulation in Pelabuhan Ratu, Indonesia

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We built a pre-computed tsunami inundation database in Pelabuhan Ratu, one of tsunami-prone areas on the southern coast of Java, Indonesia, which can be employed for a rapid estimation of tsunami inundation during an event. The pre-computed tsunami waveforms and inundations are from a total of 340 scenarios ranging from 7.5 to 9.2 in moment magnitude scale (Mw), including simple fault models of 208 thrust faults and 44 tsunami earthquakes on the plate interface, as well as 44 normal faults and 44 reverse faults in the outer-rise region. Using our tsunami inundation forecasting algorithm (NearTIF), we could rapidly estimate the tsunami inundation in Pelabuhan Ratu for three different hypothetical earthquakes. The first hypothetical earthquake is a megathrust earthquake type (Mw 9.0) offshore Sumatra which is about 600 km from Pelabuhan Ratu to represent a worst-case event in the far-field. The second hypothetical earthquake (Mw 8.5) is based on a slip deficit rate estimation from geodetic measurements and represents a most likely large event. The third hypothetical earthquake is a tsunami earthquake type (Mw 8.1) which often occurs south of Java. We compared the tsunami inundation maps produced by the NearTIF algorithm with results of direct forward inundation modeling for the hypothetical earthquakes. The tsunami inundation maps produced from both methods are similar for the three cases. However, the tsunami inundation map from the inundation database can be obtained in much shorter time (1 min) than the one from a forward inundation modeling (40 min). These indicate that the NearTIF algorithm based on pre-computed inundation database is reliable and useful for tsunami warning purposes. This study also demonstrates that the NearTIF algorithm can work well, though the earthquake source is located outside the area of fault model database because it uses a time shifting procedure for the best-fit scenario searching.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Ammon, C. J., Kanamori, H., Lay, T., & Velasco, A. A. (2006). The 17 July 2006 Java tsunami earthquake. Geophysical Research Letters, 33, L24308. doi:10.1029/2006GL028005.

    Article  Google Scholar 

  • An, C., & Meng, L. (2016). Application of array backprojection to tsunami prediction and early warning. Geophysical Research Letters, 43(8), 3677–3685.

    Article  Google Scholar 

  • Baba, T., Ando, K., Matsuoka, D., Hyodo, M., Hori, T., Takahashi, N., et al. (2015a). Large-scale, high-speed tsunami prediction for Great Nankai Trough Earthquake on the K computer. The International Journal of High Performance Computing Applications. doi:10.1177/1094342015584090.

    Google Scholar 

  • Baba, T., Takahashi, N., Kaneda, Y., Ando, K., Matsuoka, D., & Kato, T. (2015b). Parallel implementation of Dispersive tsunami wave modeling with a nesting algorithm for the 2011 Tohoku tsunami. Pure and Applied Geophysics. doi:10.1007/s00024-015-1049-2.

    Google Scholar 

  • Bilek, S.L. & Engdahl, E.R. (2007). Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophysical Research Letters, 34(20), L20311. doi:10.1029/2007GL031357.

    Article  Google Scholar 

  • Fritz, H.M., Kongko, W., Moore, A., McAdoo, B., Goff, J., Harbitz, C., Uslu, B., Kalligeris, N., Suteja, D., Kalsum, K., & Titov, V. (2007). Extreme runup from the 17 July 2006 Java tsunami. Geophysical Research Letters, 34(12), L12602. doi:10.1029/2007GL029404.

    Article  Google Scholar 

  • Fujii, Y. & Satake, K. (2006). Source of the July 2006 West Java tsunami estimated from tide gauge records. Geophysical Research Letters, 33(24), L24317. doi: 10.1029/2006GL028049.

    Article  Google Scholar 

  • Gusman, A. R., & Tanioka, Y. (2014). W phase inversion and tsunami inundation modeling for tsunami early warning: Case study for the 2011 Tohoku event. Pure and Applied Geophysics, 171(7), 1409–1422.

    Article  Google Scholar 

  • Gusman, A.R., & Tanioka, Y. (2015). Effectiveness of real-time near-field tsunami inundation Forecasts for tsunami evacuation in Kushiro City, Hokkaido, Japan. In: Santiago-Fandiño, V., Kontar, Y.A., & Kaneda, Y. (Eds,), Post-Tsunami Hazard (pp. 157–177). Springer International Publishing, Switzerland.

    Google Scholar 

  • Gusman, A. R., Tanioka, Y., MacInnes, B. T., & Tsushima, H. (2014). A methodology for near-field tsunami inundation forecasting: Application to the 2011 Tohoku tsunami. Journal of Geophysical Research: Solid Earth, 119, 8186–8206. doi:10.1002/2014JB010958.

    Google Scholar 

  • Gusman, A. R., Tanioka, Y., Matsumoto, H., & Iwasaki, S.-I. (2009). Analysis of the tsunami generated by the great 1977 Sumba earthquake that occurred in Indonesia. Bulletin of the Seismological Society of America, 99(2169), 2179. doi:10.1785/0120080324.

    Google Scholar 

  • Hamzah, L., Puspito, N. T., & Imamura, F. (2000). Tsunami catalog and zones in Indonesia. Journal of Natural Disaster Science, 22(1), 25–43.

    Article  Google Scholar 

  • Hanifa, N. R., Sagiya, T., Kimata, F., Efendi, J., Abidin, H. Z., & Meilano, I. (2014). Interplate coupling model off the southwestern coast of Java, Indonesia, based on continuous GPS data in 2008–2010. Earth and Planetary Science Letters, 401, 159–171.

    Article  Google Scholar 

  • Hanka, W., Saul, J., Weber, B., Becker, J., Harjadi, P., Rudloff, A., Bossu, R., Ottemöller, L., & Clinton, J. (2010). Real-time earthquake monitoring for tsunami warning in the Indian Ocean and beyond. Natural Hazards & Earth System Sciences, 10(12), 2611–2622.

    Article  Google Scholar 

  • Hanks, T. C., & Bakun, W. H. (2002). A bilinear source-scaling model for M-log A observations of continental earthquakes. Bulletin of the Seismological Society of America, 92(5), 1841–1846.

    Article  Google Scholar 

  • Hayes, G. P., Wald, D. J., & Johnson, R. L. (2012). Slab1.0: A three-dimensional model of global subduction zone geometries. Journal of Geophysical Research, 117, B01302. doi:10.1029/2011JB008524.

    Article  Google Scholar 

  • Imamura, F. (2009). Tsunami modeling: Calculating inundation and hazard maps. In E. N. Bernard & A. R. Robinson (Eds.), The Sea, Volume 15: Tsunamis, chap. 10 (pp. 321–332). Cambridge: Harvard Univ. Press.

  • Inazu, D., Pulido, N., Fukuyama, E., Saito, T., Senda, J., & Kumagai, H. (2016). Near-field tsunami forecast system based on near real-time seismic moment tensor estimation in the regions of Indonesia, the Philippines, and Chile. Earth, Planets and Space, 68(1), 1–18.

    Article  Google Scholar 

  • Kanamori, H. (1972). Mechanism of tsunami earthquakes. Physics of the Earth and Planetary Interiors, 6(5), 346–359.

    Article  Google Scholar 

  • Kanamori, H. (2015). Earthquake Hazard Mitigation and Real-Time Warnings of Tsunamis and Earthquakes. Pure and Applied Geophysics, 172(9), 2335–2341.

    Article  Google Scholar 

  • Kato, K., & Tsuji, Y. (1995). Tsunami of the Sumba earthquake of August 19, 1977. Journal of Natural Disaster Science, 17, 87–100.

    Google Scholar 

  • Lauterjung, J., Münch, U., & Rudloff, A. (2010). The challenge of installing a tsunami early warning system in the vicinity of the Sunda Arc, Indonesia. Natural Hazards and Earth System Sciences, 10(4), 641–646.

    Article  Google Scholar 

  • Melgar, D., Allen, R. M., Riquelme, S., Geng, J., Bravo, F., Baez, J. C., et al. (2016). Local tsunami warnings: Perspectives from recent large events. Geophysical Research Letters, 43(3), 1109–1117.

    Article  Google Scholar 

  • Newcomb, K. R., & McCann, W. R. (1987). Seismic history and seismotectonics of the Sunda Arc. Journal of Geophysical Research: Solid Earth, 92(B1), 421–439.

    Article  Google Scholar 

  • Newman, A.V., Hayes, G., Wei, Y., & Convers, J. (2011). The 25 October 2010 Mentawai tsunami earthquake, from real-time discriminants, finite-fault rupture, and tsunami excitation. Geophysical Research Letters, 38(5), L05302. doi:10.1029/2010GL046498.

    Article  Google Scholar 

  • Ohta, Y., Kobayashi, T., Tsushima, H., Miura, S., Hino, R., Takasu, T., Fujimoto, H., Iinuma, T., Tachibana, K., Demachi, T., & Sato, T. (2012). Quasi real-time fault model estimation for near-field tsunami forecasting based on RTK-GPS analysis: Application to the 2011 Tohoku-Oki earthquake (Mw 9.0). Journal of Geophysical Research: Solid Earth, 117(B2), B02311. doi:10.1029/2011JB008750.

    Article  Google Scholar 

  • Oishi, Y., Imamura, F., & Sugawara, D. (2015). Near-field tsunami inundation forecast using the parallel TUNAMI-N2 model: Application to the 2011 Tohoku-Oki earthquake combined with source inversions. Geophysical Research Letters, 42(4), 1083–1091.

    Article  Google Scholar 

  • Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.

    Google Scholar 

  • Rudloff, A., Lauterjung, J., Münch, U., & Tinti, S. (2009). Preface” The GITEWS Project (German-Indonesian Tsunami Early Warning System)”. Natural Hazards and Earth System Science, 9(4), 1381–1382.

    Article  Google Scholar 

  • Satake, K., Nishimura, Y., Putra, P. S., Gusman, A. R., Sunendar, H., Fujii, Y., et al. (2013). Tsunami source of the 2010 Mentawai, Indonesia earthquake inferred from tsunami field survey and waveform modeling. Pure and Applied Geophysics, 170(9–10), 1567–1582.

    Article  Google Scholar 

  • Tanioka, Y., Gusman, A. R., Ioki, K., & Nakamura, Y. (2014). Real-time tsunami inundation forecast for a recurrence of 17th century Great Hokkaido Earthquake in Japan. Journal of Disaster Research, 9, 358–364.

    Article  Google Scholar 

  • Tanioka, Y., Latief, H., Haris, S., Gusman, A. R., & Koshimura, S. (2012). Tsunami Hazard Mitigation at Palabuhanratu, Indonesia. Journal of Disaster Research, 7(1), 358–364.

    Article  Google Scholar 

  • Tanioka, Y., & Satake, K. (1996a). Fault parameters of the 1896 Sanriku tsunami earthquake estimated from tsunami numerical modeling. Geophysical Research Letters, 23, 1549–1552.

    Article  Google Scholar 

  • Tanioka, Y., & Satake, K. (1996b). Tsunami generation by horizontal displacement of ocean bottom. Geophysical Research Letters, 23, 861–864.

    Article  Google Scholar 

  • Tsuji, Y., Imamura, F., Matsutomi, H., Synolakis, C. E., Nanang, P. T., Harada, S., et al. (1995). Field survey of the East Java earthquake and tsunami of June 3, 1994. Pure and Applied Geophysics, 144(3–4), 839–854.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Yuichiro Tanioka (editor), Randall J. LeVeque (reviewer), and an anonymous reviewer for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Riadi Gusman.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Setiyono, U., Gusman, A.R., Satake, K. et al. Pre-computed tsunami inundation database and forecast simulation in Pelabuhan Ratu, Indonesia. Pure Appl. Geophys. 174, 3219–3235 (2017). https://doi.org/10.1007/s00024-017-1633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1633-8

Keywords

Navigation