Skip to main content
Log in

Attenuation Characteristics of High Frequency Seismic Waves in Southern India

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We present a systematic study of seismic attenuation and its related Q structure derived from the spectral analysis of P-, S-waves in the southern India. The study region is separated into parts of EDC (Eastern Dharwar Craton), Western Dharwar Craton (WDC) and Southern Granulite Terrain (SGT). The study is carried out in the frequency range 1–20 Hz, using a single-station spectral ratio technique. We make use of about 45 earthquakes, recorded in a network of about 32 broadband 3-component seismograph-stations, having magnitudes (M L) varying from 1.6 to 4.5, to estimate the average seismic body wave attenuation quality factors; Q P and Q S. Their estimated average values are observed to be fitting to the power law form of Q = Q 0 f n. The averaged power law relations for Southern Indian region (as a whole) are obtained as Q P = (95 ± 1.12)f (1.32±0.01); Q S = (128 ± 1.84)f (1.49±0.01). Based on the stations and recorded local earthquakes, for parts of EDC, WDC and SGT, the average power law estimates are obtained as: Q P = (97 ± 5)f (1.40±0.03), Q S = (116 ± 1.5)f (1.48±0.01) for EDC region; Q P = (130 ± 7)f (1.20±0.03), Q S = (103 ± 3)f (1.49±0.02) for WDC region; Q P = (68 ± 2)f (1.4±0.02), Q S = (152 ± 6)f (1.48±0.02) for SGT region. These estimates are weighed against coda Q (Q C) estimates, using the coda decay technique, which is based on a weak backscattering of S-waves. A major observation in the study of body wave analysis is the low body wave Q (Q 0 < 200), moderately high value of the frequency-exponent, ‘n’ (>0.5) and Q S/Q P ≫ 1, suggesting lateral stretches of dominant scattering mode of seismic wave propagation. This primarily could be attributed to possible thermal anomalies and spread of partially fluid-saturated rock-masses in the crust and upper mantle of the southern Indian region, which, however, needs further laboratory studies. Such physical conditions might partly be correlated to the active seismicity and intraplate tectonism, especially in SGT and EDC regions, as per the observed low-Q P and Q S values. Additionally, the enrichment of coda waves and significance of scattering mechanisms is evidenced in our observation of Q C > Q S estimates. Lapse time study shows Q C values increasing with lapse time. High Q C values at 40 s lapse times in WDC indicate that it may be a relatively stable region. In the absence of detailed body wave attenuation studies in this region, the frequency dependent Q relationships developed here are useful for the estimation of earthquake source parameters of the region. Also, these relations may be used for the simulation of earthquake strong ground motions which are required for the estimation of seismic hazard, geotechnical and retrofitting analysis of critical structures in the region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aki, K. (1969). Analysis of the seismic coda of local earthquakes as scattered waves. Journal of Geophysical Research, 74, 615–631.

    Article  Google Scholar 

  • Aki, K., & Chouet, B. (1975). Origin of coda waves: Source, attenuation and scattering effects. Journal of Geophysical Research, 80, 3322–3342.

    Article  Google Scholar 

  • Akinci, A., del Pezzo, E., & Ibanez, J. (1995). Separation of scattering and intrinsic attenuation in Southern Spain and western Anatolia (Turkey). Geophysical Journal International, 121, 337–353.

    Article  Google Scholar 

  • Arora, S. K., Varghese, T. G., & Krishnan, C. A. (1970). Some aspects of the structure of Southern India based on recent Bhadrachalam earthquakes. Nature, 225, 261–262.

    Article  Google Scholar 

  • Artemieva, I. M., Billien, M., Lévêque, J.-J., & Mooney, W. D. (2004). Shear-wave velocity, seismic attenuation, and thermal structure of the continental upper mantle. Geophysical Journal International, 157, 607–628.

    Article  Google Scholar 

  • Atkinson, G., & Boore, D. (1995). New ground motion relations for eastern North America. Bulletin of the Seismological Society of America, 85, 17–30

    Google Scholar 

  • Bianco, F., Castellano, M., del Pezzo, E., & Ibañez, J. M. (1999). Attenuation of short-period seismic waves at Mt. Vesuvius, Italy. Geophysical Journal International, 138, 67–76.

    Article  Google Scholar 

  • Bianco, F., del Pezzo, E., Castellano, M., Ibanez, J. M., & di Luccio, F. (2002). Separation of intrinsic and scattering seismic attenuation in the Southern Apennine zone, Italy. Geophysical Journal International, 150(1), 10–22.

    Article  Google Scholar 

  • Carpenter, P. J., & Sanford, A. R. (1985). Apparent Q for upper crustal rocks of the central Rio Grande Rift. Journal of Geophysical Research, 90, 8661–8674.

    Article  Google Scholar 

  • Chadwick, B., Vasudev, V. N., & Hedge, G. V. (2000). The Dharwar craton, south India interpreted as the result of late Archaean oblique convergence. Precambrian Research, 99, 91–111.

    Article  Google Scholar 

  • Chopra, S., Dinesh, K., & Rastogi, B. K. (2011). Attenuation of high frequency P and S waves in the Gujarat Region, India. Pure and Applied Geophysics, 168, 797–813.

    Article  Google Scholar 

  • Chung, T. W., & Sato, H. (2001). Attenuation of high frequency P and S waves in the crust of southeastern South Korea. Bulletin of the Seismological Society of America, 91, 1867–1874.

    Article  Google Scholar 

  • del Pezzo, E., Ibanez, J., Morales, J., Akinci, A., & Maresca, R. (1995). Measurements of intrinsic and scattering seismic attenuation in the crust. Physics of the Earth and Planetary Interiors, 85, 1373–1380.

    Google Scholar 

  • Fletcher, J. B., Haar, L. C., Vernon, F. L., Brune, J. N., Hanks, T. C., Berger, J., et al. (1986). The effects of attenuation on the scaling of source parameters for earthquakes at Anza, California. Earthquake Source Mechanics, 37, 275–283.

    Google Scholar 

  • Frankel, A. (1982). The effects of attenuation and site response on the spectra of microearthquakes in the Northeastern Caribbean. Bulletin of the Seismological Society of America, 72, 1379–1402.

    Google Scholar 

  • Frankel, A., & Wennerberg, L. (1987). Energy-flux model of the seismic coda: Separation of scattering and intrinsic attenuation. Bulletin of the Seismological Society of America, 77, 1223–1251.

    Google Scholar 

  • Gangrade, B. K., & Arora, S.K. (1996). Peninsular seismicity: A comparative study from regional earthquake data of two decades from Gauribidanur seismic array. BARC Report, 1996/E/024.

  • Gaur, V. K., & Priestley, K. F. (1996). Shear wave velocity structure beneath the Archaean granites around Hyderabad inferred from receiver function analysis. Proceedings of the Indian Academy of Sciences Earth and Planetary Sciences, 105, 1–8.

    Google Scholar 

  • Giampiccolo, E., D’Amico, S., Patane, D., & Gresta, S. (2007). Attenuation and source parameters of shallow Microearthquakes, at Mt. Etna Volcano, Italy. Bulletin of the Seismological Society of America, 97(1B), 184–197. doi:10.1785/0120050252.

    Article  Google Scholar 

  • Hanks, T. C., & McGuire, R. K. (1981). The character of high frequency strong ground motion. Bulletin of the Seismological Society of America, 71, 2071–2095.

    Google Scholar 

  • Havskov, J., Malone, S., McClurg, D., & Croson, R. (1989). Coda Q for the state of Washington. Bulletin of the Seismological Society of America, 79, 1024–1038.

    Google Scholar 

  • Havskov, J., & Ottemoller, L. (2008). SEISAN: The earthquake analysis software for Windows, Solaris, Linux, and Mac OSX Version 8.0, p. 244.

  • Ibanez, J. M., Del Pezzo, E., De Miguel, E., Herraiz, M., Alguacil, G., & Morales, J. (1990). Depth dependent seismic attenuation in the Granada Zone (Southern Spain). Bulletin of the Seismological Society of America, 80, 1232–1244

    Google Scholar 

  • Jin, A., & Aki, K. (1993). Temporal correlation between coda Q −1 and seismicity: Evidence for a structural unit in the brittle-ductile transition zone. Journal of Geodynamics, 17, 95–119.

    Article  Google Scholar 

  • Kaila, K. L. & Krishna V. G. (1992). Deep seismic sounding studies in India and major discoveries. Current science, 62, 117–154

    Google Scholar 

  • Kim K. D., Chung, T. W. & Kyung J. B. (2004). Attenuation of high - frequency P and S waves in the crust of Choongchung Islands, central South Korea. Bulletin of the Seismological Society of America, 94, 1070–1078

    Article  Google Scholar 

  • Krishna, V. G., & Ramesh, D. S. (2000). Propagation of crustal-waveguide-trapped Pg and seismic velocity structure in South Indian shield. Bulletin of the Seismological Society of America, 90, 1281–1294.

    Article  Google Scholar 

  • Kvamme, L. B., & Havskov, J. (1989). Q in southern Norway. Bulletin of the Seismological Society of America, 79, 1575–1588.

    Google Scholar 

  • Mandal, P. & Rastogi B. K. (1998). A frequency selection of coda Qc for Koyna region, India. Pure and Applied Geophysics, 153, 163–177

    Article  Google Scholar 

  • Mareschal, J. C., Poirier, A., Rolandone, F., Bienfait, G., Gariepy, C., Lapointe, R., et al. (2000). Low mantle heat flow at the edge of the North American continent, Voisey Bay, Labrador. Geophysical Research Letters, 27, 823–826.

    Article  Google Scholar 

  • Mitchell, B. J., Pan, Y., Xie, J. & Cong, L. (1997). Lg Coda Q Variation across Eurasia and its Relation to Crustal Evolution. Journal of Geophysical Research, 102, 22767–22779

    Article  Google Scholar 

  • Mitra, S., Pristley, K., Gaur, V. K., & Rai, S. S. (2006). Shear wave velocity structure of the south Indian lithosphere from Rayleigh wave phase velocity measurements. Bulletin of the Seismological Society of America, 96, 1551–1559.

    Article  Google Scholar 

  • Mohan, G., & Rai, S. S. (1992). Imaging of seismic scatterers beneath the Gauribidanur (GBA) array. Physics of the Earth and Planetary Interiors, 71, 36–45.

    Article  Google Scholar 

  • Mukhopadhyay, S., Tyagi, C., & Rai, S. S. (2006). The attenuation mechanism of seismic waves in northwestern Himalayas. Geophysical Journal International, 167, 354–360. doi:10.1111/j.1365-246X.2006.03117.x.

    Article  Google Scholar 

  • Naqvi, S. M., & Rogers, J. J. W. (1996). Precambrian geology of India. New York: Clarendon Press.

    Google Scholar 

  • Padhy, S. (2009). Characteristics of body wave attenuations in the Bhuj crust. Bulletin of the Seismological Society of America, 99, 3300–3313.

    Article  Google Scholar 

  • Pandey, O. P. (2015). Deep scientific drilling results from Koyna and Killari earthquake regions reveal why Indian shield lithosphere is unusual, thin and warm. Geoscience Frontiers. doi:10.1016/j.gsf.2015.08.010.

    Google Scholar 

  • Patane, D., Ferrucci, F., & Gresta, S. (1994). Spectral features of microearthquakes in volcanic areas: Attenuation in the crust and amplitude response of the site at Mt Etna. Bulletin of the Seismological Society of America, 84, 1842–1860.

    Google Scholar 

  • Paul A., Gupta S. C., & Pant C. C. (2003). Coda Q estimates for Kumaun Himalaya. Journal of Earth System Science, 112, 569–576

    Article  Google Scholar 

  • Pinet, C., Jaupart, C., Mareschal, J. C., Gariepy, C., Bienfait, G., & Lapointe, R. (1991). Heat flow and structure of the lithosphere in the Eastern Canadian shield. Journal of Geophysical Research, 96, 19941–19963.

    Article  Google Scholar 

  • Pulli, J. J. (1984). Attenuation of coda waves in New England. Bulletin of the Seismological Society of America, 74, 1149–1166.

    Google Scholar 

  • Rai, A., Gaur, V. K., Rai, S. S., & Priestley, K. (2008). Seismic signatures of the Pan-African orogeny: Implication for southern Indian high-grade terranes. Geophysical Journal International, 176, 518–528.

    Article  Google Scholar 

  • Rai, S. S., Priestley, K., Prakasam, K. S., Srinagesh, D., Gaur, V. K., & Du, Z. (2003). Crustal shear velocity structure of the south Indian shield. Journal of Geophysical Research, 108(B2), 2088. doi:10.1029/2002JB001776.

    Article  Google Scholar 

  • Rai, S.S., Borah, K., Das, R., Gupta, S., Shalivahan, S., Prakasam, K.S., Sivaram, K., Kumar, S., & Meena, R. (2013). The south India Precambrian crust and shallow lithospheric mantle: Initial results from the India Deep Earth Imaging Experiment (INDEX). Journal of Earth System Science, 122(6), 1435–1453. doi:10.1007/s12040-013-0357-0

    Article  Google Scholar 

  • Rajendran, C. P., John, B., Sreekumari, K., & Rajendran, K. (2009). Reassessing the earthquake hazard in Kerala based on the historical and current seismicity. Journal Geological Society Of India, 73, 785–802.

    Article  Google Scholar 

  • Rastogi, B. K., Chadha, R. K., & Sarma, C. S. P. (1995). Investigations of June 7, 1988 earthquake of magnitude 4.5 near Idukki Dam in southern India. Pure and Applied Geophysics, 145, 109–122.

    Article  Google Scholar 

  • Rautian, T. G., & Khalturin, V. I. (1978). The use of coda for determination of the earthquake source spectrum. Bulletin of the Seismological Society of America, 68, 923–948.

    Google Scholar 

  • Ray, L., Kumar, P. S., Reddy, G. K., Roy, S., Rao, G. V., Srinivasan, R., et al. (2003). High mantle heat flow in a precambrian granulite province: Evidence from southern India. Journal of Geophysical Research, 108(B2), ETG 6-1–ETG 6-13. doi:10.1029/2001JB000688.

    Article  Google Scholar 

  • Rhea, S. (1984). Q determined from local earthquakes in the South Carolina coastal plain, Bulletin of the Seismological Society of America, 74, 2257–2268

    Google Scholar 

  • Rietbrock, A. (2001). P wave attenuation structure in the fault area of the 1995 Kobe earthquake. Journal of Geophysical Research, 106, 4141–4154

    Article  Google Scholar 

  • Roecker, S. W., Tucker, B., King, J., & HARTZFELD, D. (1982). Estimates of Q in Central Asia as a function of frequency and depth using the coda of locally recorded earthquakes. Bulletin of the Seismological Society of America, 72, 129–149.

    Google Scholar 

  • Roy, S., & Rao, R. U. M. (2000). Heat flow in the Indian shield. Journal of Geophysical Research, 105, 25.587–25.604.

    Article  Google Scholar 

  • Saikia, U., Rai, S. S., Subrahmanyam, M., Satyajit, D., Somashish, B., Kajaljyoti, B., et al. (2014). Accurate location and focal mechanism of small earthquakes near Idukki Reservoir, Kerala: Implication for earthquake genesis. Current Science, 107, 11

    Google Scholar 

  • Sanders, C. O., Ponko, C., Nixon, L. D., & Schwartz, E. A. (1995). Seismological evidence for magmatic and hydrothermal structure in Long Valley caldera from local earthquake attenuation and velocity tomography. Journal of Geophysical Research, 100(B5), 8311–8326.

    Article  Google Scholar 

  • Sarkar, D., Kumar, M. R., Saul, J., Kind, R., Raju, P. S., Chadha, R. K., et al. (2003). A receiver function perspective of Dharwar craton (India) crustal structure. Geophysical Journal International, 154, 205–211.

    Article  Google Scholar 

  • Sharma, B., Gupta, A. K., Devi, D. K., Dinesh, K., Teotia, S. S., & Rastogi, B. K. (2008). Attenuation of high frequency seismic waves in Kachchh region, Gujarat, India. Bulletin of the Seismological Society of America, 98, 2325–2340.

    Article  Google Scholar 

  • Singh, C., Basha, S. K., Shekar, M., & Chadha, R. K. (2012a). Spatial variation of coda wave attenuation in the Southern Indian Shield and its implications, Geologica Acta, 10(3), 309–318

    Google Scholar 

  • Singh, C., Singh, A., Bharathi, S. V. K., Bansal, A. R., & Chadha, R. K, (2012b). Frequency-dependent body wave attenuation characteristics in the Kumaun Himalaya. Tectonophysics, 524–525, 37–42

    Article  Google Scholar 

  • Singh, S. K., Garcia, D., Pacheco, J. F., Valenzuela, R., Bansal, B. K., & Dattatrayam, R. S. (2004). Q of the Indian shield. Bulletin of the Seismological Society of America, 94, 1564–1570.

    Article  Google Scholar 

  • Singh, H. N., Raghavan, V., & Varma, A. K. (1989). Investigation of Idukki earthquake sequence of 7th–8th June 1988. Journal of Geological Society of India, 34, 133–146.

    Google Scholar 

  • Toksoz, M. N., Johnston, D. H., & TIMUR, A. (1979). Attenuation of seismic waves in dry and saturated rocks: I. Laboratory measurements. Geophysics, 44, 681–690.

    Article  Google Scholar 

  • Tripathi, J. N., & Ugalde, A. (2004). Regional estimation of Q from seismic coda observations by the Gauribidanur seismic array (southern India). Physics of the Earth and Planetary Interiors, 145, 115–126.

    Article  Google Scholar 

  • Tsujiura, M. (1966). Frequency analysis of the seismic waves. Bulletin of Earthquake Research Institute, The University of Tokyo, 44, 873–891.

    Google Scholar 

  • Vassiliou, M., Salvado, C. A., & Tittman, B. R. (1982). Seismic attenuation. In R. S. Carmichael (Ed.), CRC handbook of physical properties of rocks (Vol. 3). Boca Raton: CRC Press.

    Google Scholar 

  • Wennerberg, L. (1993). Multiple scattering interpretation of coda-Q measurements. Bulletin of the Seismological Society of America, 83, 1279–1290.

    Google Scholar 

  • Winkler, K. W., & Nur, A. (1982). Seismic attenuation: Effects of pore fluids and frictional sliding. Geophysics, 47, 1–15.

    Article  Google Scholar 

  • Yoshimoto, K., Sato, H., & Ohtake, M. (1993). Frequency-dependent attenuation of P and S waves in the Kanto area, Japan, based on the coda normalization method. Geophysical Journal International, 114, 165–174.

    Article  Google Scholar 

  • Zucca, J. J., Hutchings, L. J., & Kasameyer, P. W. (1994). Seismic velocity and attenuation structure of the Geysers geothermal field, California. Geothermics, 23, 111–126.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the suggestions of the reviewers and the Editor, Pure and Applied Geophysics journal for the substantial improvement of the manuscript. We acknowledge that the data used in this study is through the project: INDEX-PSC-0204 of CSIR-NGRI, India. The authors also acknowledge the support of their respective organisations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Sivaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sivaram, K., Utpal, S., Kanna, N. et al. Attenuation Characteristics of High Frequency Seismic Waves in Southern India. Pure Appl. Geophys. 174, 2523–2545 (2017). https://doi.org/10.1007/s00024-017-1574-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-017-1574-2

Keywords

Navigation