Skip to main content
Log in

Parallel Implementation of Dispersive Tsunami Wave Modeling with a Nesting Algorithm for the 2011 Tohoku Tsunami

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Because of improvements in offshore tsunami observation technology, dispersion phenomena during tsunami propagation have often been observed in recent tsunamis, for example the 2004 Indian Ocean and 2011 Tohoku tsunamis. The dispersive propagation of tsunamis can be simulated by use of the Boussinesq model, but the model demands many computational resources. However, rapid progress has been made in parallel computing technology. In this study, we investigated a parallelized approach for dispersive tsunami wave modeling. Our new parallel software solves the nonlinear Boussinesq dispersive equations in spherical coordinates. A variable nested algorithm was used to increase spatial resolution in the target region. The software can also be used to predict tsunami inundation on land. We used the dispersive tsunami model to simulate the 2011 Tohoku earthquake on the Supercomputer K. Good agreement was apparent between the dispersive wave model results and the tsunami waveforms observed offshore. The finest bathymetric grid interval was 2/9 arcsec (approx. 5 m) along longitude and latitude lines. Use of this grid simulated tsunami soliton fission near the Sendai coast. Incorporating the three-dimensional shape of buildings and structures led to improved modeling of tsunami inundation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aida, I., Reliability of a tsunami source model derived from fault parameters, J. Phys. Earth, 26, 57–73, 1978.

  • Ammon C.J., T. Lay, H. Kanamori, and M. Cleveland. 2011. A rupture model of the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 693–696, 2011.

  • Baba, T., N. Takahashi, Y. Kaneda, Y. Inazawa and M. Kikkojin, Tsunami inundation modeling of the 2011 Tohoku earthquake using three-dimensional building data for Sendai, Miyagi Prefecture, Japan, in V. S.-Fandiño et al. (ed.): Tsunami Events and Lessons Learned, Advances in Natural and Technological Hazards Research, SPRINGER, 35, 89–98, doi:10.1007/978-94-007-7269-4_3, 2014.

  • British Oceanographic Data Centre, GEBCO (General Bathymetric Chart of the Oceans). 2010. http://www.gebco.net/data_and_products/gridded_bathymetry_data, 2010.

  • Cerjan, C., D. Kosloff, R. Kosloff, and M. Reshef, A nonreflecting boundary condition for discrete acoustic and elastic wave equations, Geophysics, 50, 705–708, doi:10.1190/1.1441945, 1985.

  • Fujitsu Corporation, press release, http://www.fujitsu.com/global/news/pr/archives/month/2011/20111102-02.html, 2012.

  • Goldstein, P., D. Dodge, M. Firpo, L. Minner, J. E. Tull, D. Harris, and W. C. Tapley, SAC—Seismic Analysis Code, http://www.iris.edu/manuals/sac/manual.html, 2007.

  • Goto, K., K. Fujima, D. Sugawara, S. Fujino, K. Imai, R. Tsudaka, T. Abe and T. Haraguchi, Field measurements and numerical modeling for the run-up heights and inundation distances of the 2011 Tohoku-oki tsunami at Sendai Plain, Japan, Earth Planets Space, 64, 1247–1257, 2012.

  • Grilli, S.T., J.C. Harris, T.S.T. Bakhsh, T.L. Masterlark, C. Kyriakopoulos, J.T. Kirby and F. Shi, Numerical simulation of the 2011 Tohoku tsunami based on a new transient FEM co-seismic source: Comparison to far- and near-field observations, Pure Appl. Geophys., 170, 1333–1359, 2013.

  • Hayashi, Y., H. Tsushima, K. Hirata, K. Kimura, and K. Maeda, Tsunami source area of the 2011 off the Pacific coast of Tohoku Earthquake determined from tsunami arrival times at offshore observation stations, Earth Planets Space, 63, 809–813, 2011.

  • Horillo, J., Kowalik, Z., Shigihara, Y., Wave dispersion study in the Indian Ocean-tsunami of December 26, 2004, Marine Geodesy, 29, 149–166, 2006.

  • Imamura, F., S. Koshimura, T. Oie, Y. Mabchi, and Y. Murashima, Tsunami simulation for the 2011 off the Pacific coast of Tohoku Earthquake (Tohoku University model ver. 1.0), 12 pp., 2011.

  • Ito, T., K. Ozawa, T. Watanabe, and T. Sagiya. Slip distribution of the 2011 off the Pacific coast of Tohoku Earthquake inferred from geodetic data, Earth Planets Space, 63, 627–630, 2011.

  • Iwase, H., Development of numerical model including dispersion effect from the tsunami source to the coastal area (in Japanese), PhD. thesis, 166p., 2005.

  • Jakeman, J.D., O.M., Nielsen, K., VanPutten, R., Mleczeko,, D. Burbidge, and N. Horspool, Towards spatially distributed quantitative assessment of tsunami inundation models, Ocean Dynamics, doi:10.1007/s10236-010-0312-4, 2010.

  • Japan Society of Civil Engineers, Tsunami Assessment Method for Nuclear Power Plants in Japan, JSCE, 321p., 2002.

  • Kido, Y., T. Fujiwara, T. Sataki, M. Kinoshita, S. Kodaira, M. Sano, Y. Ichiyama, Y. Hanafusa, S. Tsuboi. 2011. Bathymetric feature around Japan Trench obtained by JAMSTEC multi narrow beam survey, MIS036-P58 (in Japanese), Japan Geoscience Union Meeting, 2011.

  • Kirby, J. T., F. Shi, B. Tehranirad, J. C. Harris, and S. T. Grilli, Dispersive tsunami waves in the ocean: Model equations and sensitivity to dispersion and Coriolis effects, Ocean Modelling, 62, 39–55, 2013.

  • Løvholt, F., G. Kaiser, S. Glimsdal, L. Scheele, C. B. Harbitz, and G. Pedersen, Modeling propagation and inundation of the 11 March 2011 Tohoku tsunami, Nat. Hazards Earth Syst. Sci., 12, 1017–1028, doi:10.5194/nhess-12-1017-2012, 2012.

  • Madsen, P.A., D.R. Fuhrman, and H.A. Schäffer, On the solitary wave paradigm for tsunamis, J. Geophys. Res., 113, C12012, doi:10.1029/2008JC004932, 2008.

  • Maeda, T., T. Furumura, S. Sakai, and M. Shinohara, Significant tsunami observed at ocean-bottom pressure gauges during the 2011 off the Pacific coast of Tohoku Earthquake, Earth Planets Space, 63, 803–808, 2011.

  • Matsuyama, M., M. Ikeno, T. Sakakiyama, and T. Takeda, A study of tsunami wave fission in an undistorted experiment, Pure Appl. Geophys., 164, 617–631, doi:10.1007/s00024-006-0177-0, 2007.

  • Mori, N., T. Takahashi and The 2011 Tohoku Earthquake Tsunami Joint Survey Group, Nationwide survey of the 2011 Tohoku earthquake tsunami, Coastal Engineering Journal, 54, 1–27, 2012.

  • Murashima, Y., S. Koshimura, H. Oka, Y. Murata, K. Fujima, H. Sugino, Y. Iwabuchi, Numerical simulation of soliton fission in 2011 Tohoku tsunami using nonlinear dispersive wave model, (in Japanese with English abstract), J. Japan Society of Civil Engineers (B2), 68, I_206–I_212, 2012.

  • Murashima, Y., S. Koshimura, H. Oka, Y. Murata, and F. Imamura, Development of the practical river run-up model of tsunami based on non-linear dispersive wave theory (in Japanese), J. Japan Society of Civil Engineers (B2), 66, 201–205, 2010.

  • Nishimura, T., H. Munekane, and H. Yarai, The 2011 off the Pacific coast of Tohoku Earthquake and its aftershocks observed by GEONET, Earth Planets Space, 63, 631–636, 2011.

  • Peregrine, H., Equations for water waves and the approximations behind them, edited by R. E. Meyer, pp. 95–121, Waves on Beaches and Resulting Sediment Transport, Academic Press, New York, 1972.

  • Press, W. H., B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes, Cambridge Univ. Press, Cambridge, 1986.

  • Roeber, V., Cheung, K. F., and Kobayashi, M. H., Shock-capturing Boussinesq-type model for nearshore wave processes, Coastal Engineering, 57, 407–423, 2010.

  • Saito T., K. Satake, and T. Furumura, Tsunami waveform inversion including dispersive waves: the 2004 earthquake off Kii Peninsula, Japan, J. Geophys. Res., 115, B06303, doi:10.1029/2009JB006884, 2010.

  • Saito, T., Y. Ito, D. Inazu, and R. Hino, Tsunami source of the 2011 Tohoku‐Oki earthquake, Japan: Inversion analysis based on dispersive tsunami simulations, Geophys. Res. Lett., 38, L00G19, doi:10.1029/2011GL049089, 2011.

  • Shao, G, X. Li, C. Ji, and T. Maeda, Focal mechanism and slip history of 2011 Mw 9.1 off the Pacific coast of Tohoku earthquake, constrained with teleseismic body and surface waves, Earth Planets Space, 63, 559–564, 2011.

  • Satake, K. Tsunamis, in International Handbook of Earthquake and Engineering Seismology, (eds. Lee,W.H.K., Kanamori, H., Jennings, P.C., and Kisslinger, C.), Academic Press, 81A, 437–451, 2002.

  • Satake, K., Y. Fujii, T. Harada, and Y. Namegaya, Time and space distribution of coseismic slip of the 2011 Tohoku earthquake as inferred from tsunami waveform Data, Bull. Seismol. Soc. Am., 103, 1473–1492, doi:10.1785/0120120122, 2013.

  • Shigihara, Y., and Fujima K., Wave dispersion effect in the Indian ocean tsunami, J. Disaster Research, 1, 142–147, 2006.

  • Shuto, N., The Nihonkai-Chubu earthquake tsunami on the north Akita coast (in Japanese), Costal Engin. Japan JSCE 28, Tokyo, Japan, 255–264, 1985.

  • Sitanggang K. I. and Lynett, P., Parallel computation of a highly nonlinear Boussinesq equation model through domain decomposition, Int. J. Numer. Fluids, 49, 57–74, 2005.

  • Son, S., Lynett, P., Kim, D.-H., Nested and multi-physics modeling of tsunami evolution from generation to inundation, Ocean Modell. 38, 96–113, doi:10.1016/j.ocemod.2011.02.007, 2011.

  • Suito, H., T. Nishimura, M. Tobita, T. Imakiire, and S. Ozawa, Interplate fault slip along the Japan Trench before the occurrence of the 2011 off the Pacific coast of Tohoku Earthquake as inferred from GPS data, Earth Planets Space, 63, 615–619, 2011.

  • Takagawa, T., and T. Tomita, Tsunami source inversion with time evolution and real-time estimation of permanent deformation at observation points, J. Japan Society of Civil Engineers (B2), 68, I_311–I_315, 2012.

  • Tsushima, H., R. Hino, Y. Tanioka, F. Imamura, H. Fujimoto, Tsunami waveform inversion incorporating permanent seafloor deformation and its application to tsunami forecasting, J. Geophys. Res., 117, B03311, doi:10.1029/2011JB008877, 2012.

  • Wessel, P., Smith, W.H.F., New, improved version of generic mapping tools released, EOS Trans., AGU79, 579, 1998.

  • Yagi, Y. and Y. Fukahata, Rupture process of the 2011 Tohoku-oki earthquake and absolute elastic strain release, Geophys. Res. Lett., 38, L19307, doi:10.1029/011GL048701, 2011.

  • Zhou, H., C. W. Moore, Y. Wei, and V. V. Titov, A nested-grid Boussinesq-type approach to modeling dispersive propagation and runup of landslide-generated tsunamis, Nat. Hazards Earth Syst. Sci., 11, 2677–2697, doi:10.5194/nhess-11-2677-2011, 2011.

Download references

Acknowledgments

Dr Hong Kie Thio, Dr Phil Cummins, and Dr David Burbidge kindly provided us with the URSGA tsunami software. The wave flume experimental data was provided by the Central Research Institute of the Electric Power Industry. The 2011 Tohoku tsunami data for the GPS buoy were provided by the Ministry of Land, Infrastructure, Transport and Tourism, and DART data came from the Pacific Marine Environmental Laboratory. The DEM and 3D building data were provided by the Geospatial Information Authority of Japan. The digital data of the initial sea-surface displacement of the 2011 Tohoku tsunami were provided by Dr Tatsuhiko Saito. Comments from Dr Takayuki Miyoshi and Dr Takane Hori were very useful for improving the manuscript. We thank anonymous reviewers for constructive comments. This research was implemented in the Strategic Programs for Innovative Research, Field 3, and was also partially supported by the Science and Technology Research Partnership for Sustainable Development. Some figures were prepared by use of Generic Mapping Tools (Wessel and Smith 1998), Seismic Analysis Code (Goldstein et al. 2007), and ArcGIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshitaka Baba.

Appendix: Finite-difference Scheme for Nonlinear Dispersive Equations

Appendix: Finite-difference Scheme for Nonlinear Dispersive Equations

The finite difference calculation was performed in the staggered-grid system shown in Fig. 15. Because the integration over time was solved with a leapfrog method, the water height (h) was defined at time \( t = n\Delta t \), and the depth-integrated quantities (M, N) were defined at \( t = (n - 1/2)\Delta t \), where \( \Delta t \) is the time step and \( n = 1,2,3 \ldots \). In the Appendix, φ and θ indicate the longitude and co-latitude, respectively, R is the earth’s radius, d is the water depth, and D is total depth, that is d + h. g is the gravitational constant, f is the Coriolis parameter, and n is the Manning’s roughness coefficient. We considered the finite-difference form of the dispersion term, the final term on the right-hand side of Eq. (1).

Fig. 15
figure 15

Staggered-grid system for the finite-difference simulation of nonlinear dispersive equations

$$ \frac{{d^{2} }}{3R\;\sin \theta }\frac{\partial }{\partial \varphi }\left[ {\frac{1}{R\;\sin \theta }\left( {\frac{{\partial^{2} M}}{\partial \varphi \partial t} + \frac{{\partial^{2} \left( {N\;\sin \theta } \right)}}{\partial \theta \partial t}} \right)} \right] = \frac{{d^{2} }}{{3R^{2} \sin^{2} \theta }}\frac{\partial }{\partial t}\left( {\frac{{\partial^{2} M}}{{\partial \varphi^{2} }} + \frac{{\partial^{2} \left( {N\;\sin \theta } \right)}}{\partial \varphi \partial \theta }} \right), $$
(4)

where

$$ \frac{{\partial^{2} M}}{{\partial \varphi^{2} }} = \frac{{M_{i + 1,j} - 2M_{i,j} + M_{i - 1,j} }}{{\Delta \varphi^{2} }}, $$
(5)

\( \Delta \varphi \) is the grid size along a longitude line. We introduced

$$ U = M_{i + 1,j} - 2M_{i,j} + M_{i - 1,j} , $$
(6)

to write

$$ \frac{\partial }{\partial t}\left( {\frac{{\partial^{2} M}}{{\partial \varphi^{2} }}} \right) = \frac{\partial }{\partial t}\left( {\frac{U}{{\Delta \varphi^{2} }}} \right) = \frac{{U^{{n + \frac{1}{2}}} - U^{{n - \frac{1}{2}}} }}{{\Delta \varphi^{2} \Delta t}}. $$
(7)

The other term of Eq. (4) can be expressed as:

$$ \begin{gathered} \frac{{\partial^{2} \left( {N\;\sin \theta } \right)}}{\partial \varphi \partial \theta } \; = \; \frac{\partial }{\partial \varphi }\left( {\frac{{\bar{N}_{i,j + 1} \sin \left( {\theta + \Delta \theta } \right) - \bar{N}_{i,j} \sin \left( \theta \right)}}{\Delta \theta }} \right) \\ \, = \, \frac{{\bar{N}_{i,j + 1} \sin \left( {\theta + \Delta \theta } \right) - \bar{N}_{i - 1,j + 1} \sin \left( {\theta + \Delta \theta } \right) - \bar{N}_{i,j} \sin \left( \theta \right) + \bar{N}_{i - 1,j} \sin \left( \theta \right)}}{\Delta \theta \Delta \varphi }, \\ \end{gathered} $$
(8)

where \( \Delta \theta \) is the grid size along a latitude line. Because of the staggered grid system:

$$ \bar{N}_{i,j} = \frac{{N_{i,j} + N_{i + 1,j} + N_{i,j - 1} + N_{i + 1,j - 1} }}{4}. $$
(9)

By defining:

$$ \bar{V} = \bar{N}_{i,j + 1} \sin \left( {\theta + \Delta \theta } \right) - \bar{N}_{i - 1,j + 1} \sin \left( {\theta + \Delta \theta } \right) - \bar{N}_{i,j} \sin \left( \theta \right) + - \bar{N}_{i - 1,j} \sin \left( \theta \right), $$
(10)

we can write:

$$ \frac{\partial }{\partial t}\left( {\frac{{\partial^{2} \left( {N\;\sin \theta } \right)}}{\partial \varphi \partial \theta }} \right) = \frac{\partial }{\partial t}\left( {\frac{{\bar{V}}}{\Delta \theta \Delta \varphi }} \right) = \frac{{\bar{V}^{{n + \frac{1}{2}}} - \bar{V}^{{n - \frac{1}{2}}} }}{\Delta \theta \Delta \varphi \Delta t}. $$
(11)

Accordingly, the dispersion term of Eq. (1) can be expressed by using Eqs. (7) and (11) in finite-difference form as:

$$ \frac{{d^{2} }}{3R\;\sin \theta }\frac{\partial }{\partial \varphi }\left[ {\frac{1}{R\;\sin \theta }\left( {\frac{{\partial^{2} M}}{\partial \varphi \partial t} + \frac{{\partial^{2} \left( {N\;\sin \theta } \right)}}{\partial \theta \partial t}} \right)} \right] = \frac{{\bar{d}_{i,j}^{2} }}{{3R^{2} \sin^{2} \theta \Delta t}}\left( {\frac{{U^{{n + \frac{1}{2}}} - U^{{n - \frac{1}{2}}} }}{{\Delta \varphi^{2} }} + \frac{{\bar{V}^{{n + \frac{1}{2}}} - \bar{V}^{{n - \frac{1}{2}}} }}{\Delta \theta \Delta \varphi }} \right), $$
(12)

where also, because of the staggered grid system:

$$ \bar{d}_{i,j} = \frac{{d_{i,j} + d_{i + 1,j} }}{2} $$
(13)

Finally, Eq. (1) can be written in finite-difference form as:

$$ M^{{n + \frac{1}{2}}} = M^{{n - \frac{1}{2}}} - \frac{1}{R\;\sin \theta }\frac{\Delta t}{\Delta \varphi }\left( {\frac{{M_{i + 1,j}^{{n - \frac{1}{2}2}} }}{{{\bar{\text{D}}}_{i + 1,j} }} - \frac{{M_{i,j}^{{n - \frac{1}{2}2}} }}{{{\bar{\text{D}}}_{i,j} }}} \right)\;\; - \frac{1}{R}\frac{\Delta t}{\Delta \theta }\left( {\frac{{M_{i,j + 1}^{{n - \frac{1}{2}}} \bar{N}_{i,j + 1}^{{n - \frac{1}{2}}} }}{{{\bar{\text{D}}}_{i,j + 1} }} - \frac{{M_{i,j}^{{n - \frac{1}{2}}} \bar{N}_{i,j}^{{n - \frac{1}{2}}} }}{{{\bar{\text{D}}}_{i,j} }}} \right) + \frac{{g{\bar{\text{D}}}_{i,j} }}{R\;\sin \theta }\frac{\Delta t}{\Delta \varphi }\left( {h_{i + 1,j}^{n} - h_{i,j}^{n} } \right)\;\; - f\bar{N}_{i,j}^{{n - \frac{1}{2}}} \Delta t - \frac{{gn^{2} }}{{\bar{D}_{i,j}^{{{\raise0.7ex\hbox{$7$} \!\mathord{\left/ {\vphantom {7 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} }}M_{i,j}^{{n - \frac{1}{2}}} \sqrt {M_{i,j}^{{n - \frac{1}{2}2}} + \bar{N}_{i,j}^{{n - \frac{1}{2}2}} } \Delta t\;\; + \frac{{\bar{d}_{i,j}^{2} }}{{3R^{2} \sin^{2} \theta }}\left( {\frac{{U^{{n + \frac{1}{2}}} - U^{{n - \frac{1}{2}}} }}{{\Delta \varphi^{2} }} + \frac{{\bar{V}^{{n + \frac{1}{2}}} - \bar{V}^{{n - \frac{1}{2}}} }}{\Delta \theta \Delta \varphi }} \right), $$
(14)

where, again, because of the staggered grid system:

$$ {\bar{\text{D}}}_{i,j} = \frac{{d_{i,j} + d_{i + 1,j} + h_{i,j} + h_{i + 1,j} }}{2} $$
(15)

It should be noted that the 2nd and 3rd terms on the right-hand side of Eq. (14) were approximated with upwind finite differences.

Similarly, we considered the finite difference form for the dispersion term (the final term on the left-hand side) of Eq. (2):

$$ \frac{{d^{2} }}{3R}\frac{\partial }{\partial \theta }\left[ {\frac{1}{R\;\sin \theta }\left( {\frac{{\partial^{2} M}}{\partial \varphi \partial t} + \frac{{\partial^{2} \left( {N\;\sin \theta } \right)}}{\partial \theta \partial t}} \right)} \right] = \frac{{d^{2} }}{{3R^{2} }}\frac{\partial }{\partial t}\left[ {\frac{\partial }{\partial \theta }\left( {\frac{1}{\sin \theta }\frac{\partial M}{\partial \varphi }} \right) + \frac{\partial }{\partial \theta }\left( {\frac{1}{\sin \theta }\frac{\partial N\;\sin \theta }{\partial \theta }} \right)} \right] $$
(16)

where:

$$ \frac{\partial }{\partial \theta }\left( {\frac{1}{\sin \theta }\frac{\partial M}{\partial \varphi }} \right) = \frac{\partial }{\partial \theta }\left( {\frac{1}{\sin \theta }\frac{{\bar{M}_{i + 1,j} - \bar{M}_{i,j} }}{\Delta \varphi }} \right) = \frac{1}{\Delta \theta \Delta \varphi }\left( {\frac{{\bar{M}_{i + 1,j} - \bar{M}_{i,j} }}{\sin \theta } - \frac{{\bar{M}_{i + 1,j - 1} - \bar{M}_{i,j - 1} }}{\sin (\theta - \Delta \theta )}} \right), $$
(17)

and because of the staggered grid system:

$$ \bar{M}_{i,j} = \frac{{M_{i,j} + M_{i,j + 1} + M_{i - 1,j} + M_{i - 1,j + 1} }}{4}. $$
(18)

By further defining:

$$ \bar{U} = \frac{{\bar{M}_{i + 1,j} - \bar{M}_{i,j} }}{\sin \theta } - \frac{{\bar{M}_{i + 1,j - 1} - \bar{M}_{i,j - 1} }}{\sin (\theta - \Delta \theta )}, $$
(19)

we can write:

$$ \frac{\partial }{\partial t}\left[ {\frac{\partial }{\partial \theta }\left( {\frac{1}{\sin \theta }\frac{\partial M}{\partial \varphi }} \right)} \right] = \frac{\partial }{\partial t}\left( {\frac{{\bar{U}}}{\Delta \theta \Delta \varphi }} \right) = \frac{{\bar{U}^{{n + \frac{1}{2}}} - \bar{U}^{{n - \frac{1}{2}}} }}{\Delta \theta \Delta \varphi \Delta t}. $$
(20)

The other term of Eq. (16) can be expressed as:

$$ \begin{gathered} \frac{\partial }{\partial \theta }\left( {\frac{1}{\sin \theta }\frac{\partial N\;\sin \theta }{\partial \theta }} \right) = \frac{\partial }{\partial \theta }\left( {\frac{1}{\sin \theta }\frac{{N_{{i,j + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \sin \left( {\theta + {\raise0.7ex\hbox{${\Delta \theta }$} \!\mathord{\left/ {\vphantom {{\Delta \theta } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right) - N_{{i,j - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \sin \left( {\theta - {\raise0.7ex\hbox{${\Delta \theta }$} \!\mathord{\left/ {\vphantom {{\Delta \theta } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right)}}{\Delta \theta }} \right) \\ = \frac{1}{\Delta \theta }\frac{\partial }{\partial \theta }\left( {\frac{{N_{{i,j + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \sin \left( {\theta + {\raise0.7ex\hbox{${\Delta \theta }$} \!\mathord{\left/ {\vphantom {{\Delta \theta } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right) - N_{{i,j - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \sin \left( {\theta - {\raise0.7ex\hbox{${\Delta \theta }$} \!\mathord{\left/ {\vphantom {{\Delta \theta } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right)}}{\sin \theta }} \right) \\ = \frac{1}{{\Delta \theta^{2} }}\left( {\frac{{N_{i,j + 1} \sin \left( {\theta + \Delta \theta } \right) - N_{i,j} \sin \left( \theta \right)}}{{\sin \left( {\theta + {\raise0.7ex\hbox{${\Delta \theta }$} \!\mathord{\left/ {\vphantom {{\Delta \theta } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right)}} - \frac{{N_{i,j} \sin \left( \theta \right) - N_{i,j - 1} \sin \left( {\theta - \Delta \theta } \right)}}{{\sin \left( {\theta - {\raise0.7ex\hbox{${\Delta \theta }$} \!\mathord{\left/ {\vphantom {{\Delta \theta } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right)}}} \right). \\ \end{gathered} $$
(21)

By defining:

$$ V = \frac{{N_{i,j + 1} \sin \left( {\theta + \Delta \theta } \right) - N_{i,j} \sin \left( \theta \right)}}{{\sin \left( {\theta + {\raise0.7ex\hbox{${\Delta \theta }$} \!\mathord{\left/ {\vphantom {{\Delta \theta } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right)}} - \frac{{N_{i,j} \sin \left( \theta \right) - N_{i,j - 1} \sin \left( {\theta - \Delta \theta } \right)}}{{\sin \left( {\theta - {\raise0.7ex\hbox{${\Delta \theta }$} \!\mathord{\left/ {\vphantom {{\Delta \theta } 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}} \right)}}, $$
(22)

and we can write:

$$ \frac{\partial }{\partial t}\left( {\frac{\partial }{\partial \theta }\left( {\frac{1}{\sin \theta }\frac{\partial N\;\sin \theta }{\partial \theta }} \right)} \right) = \frac{1}{{\Delta \theta^{2} }}\frac{\partial V}{\partial t} = \frac{{V^{{n + \frac{1}{2}}} - V^{{n - \frac{1}{2}}} }}{{\Delta t\Delta \theta^{2} }}. $$
(23)

By using Eqs. (20) and (23), the dispersion term of Eq. (2) can be expressed in finite-difference form as:

$$ \frac{{d^{2} }}{3R}\frac{\partial }{\partial \theta }\left[ {\frac{1}{R\;\sin \theta }\left( {\frac{{\partial^{2} M}}{\partial \varphi \partial t} + \frac{{\partial^{2} \left( {N\;\sin \theta } \right)}}{\partial \theta \partial t}} \right)} \right] = \frac{{\bar{d}_{i,j}^{2} }}{3R}\left( {\frac{{\bar{U}^{{n + \frac{1}{2}}} - \bar{U}^{{n - \frac{1}{2}}} }}{\Delta \theta \Delta \varphi \Delta t} + \frac{{V^{{n + \frac{1}{2}}} - V^{{n - \frac{1}{2}}} }}{{\Delta t\Delta \theta^{2} }}} \right), $$
(24)

where because of the staggered grid system:

$$ \bar{d}_{i,j} = \frac{{d_{i,j} + d_{i,j + 1} }}{2}. $$
(25)

Finally, Eq. (2) can be written in finite-difference form as:

$$ \begin{gathered} N^{{n + \frac{1}{2}}} = N^{{n - \frac{1}{2}}} - \frac{1}{R\;\sin \theta }\frac{\Delta t}{\Delta \varphi }\left( {\frac{{\bar{M}_{i,j + 1}^{{n - \frac{1}{2}}} N_{i,j + 1}^{{n - \frac{1}{2}}} }}{{{\bar{\text{D}}}_{i,j + 1} }} - \frac{{\bar{M}_{i,j}^{{n - \frac{1}{2}}} N_{i,j}^{{n - \frac{1}{2}}} }}{{{\bar{\text{D}}}_{i,j} }}} \right) - \frac{1}{R}\frac{\Delta t}{\Delta \theta }\left( {\frac{{N_{i + 1,j}^{{n - \frac{1}{2}2}} }}{{{\bar{\text{D}}}_{i + 1,j} }} - \frac{{N_{i,j}^{{n - \frac{1}{2}2}} }}{{{\bar{\text{D}}}_{i,j} }}} \right) \hfill \\ + \frac{{g{\bar{\text{D}}}_{i,j} }}{R}\frac{\Delta t}{\Delta \theta }\left( {h_{i,j + 1}^{n} - h_{i,j}^{n} } \right) + f\bar{M}_{i,j}^{{n - \frac{1}{2}}} \Delta t \hfill \\ - \frac{{gn^{2} }}{{\bar{D}_{i,j}^{{{\raise0.7ex\hbox{$7$} \!\mathord{\left/ {\vphantom {7 3}}\right.\kern-0pt} \!\lower0.7ex\hbox{$3$}}}} }}N_{i,j}^{{n - \frac{1}{2}}} \sqrt {\bar{M}_{i,j}^{{n - \frac{1}{2}2}} + N_{i,j}^{{n - \frac{1}{2}2}} } \Delta t \hfill \\ + \frac{{\bar{d}_{i,j}^{2} }}{{3R^{2} }}\left( {\frac{{\bar{U}^{{n + \frac{1}{2}}} - \bar{U}^{{n - \frac{1}{2}}} }}{\Delta \theta \Delta \varphi } + \frac{{V^{{n + \frac{1}{2}}} - V^{{n - \frac{1}{2}}} }}{{\Delta \theta^{2} }}} \right), \hfill \\ \end{gathered} $$
(26)

where, because of the staggered grid system:

$$ {\bar{\text{D}}}_{i,j} = \frac{{d_{i,j} + d_{i,j + 1} + h_{i,j} + h_{i,j + 1} }}{2}. $$
(27)

It should also be noted that the 2nd and 3rd terms on the right-hand side of Eq. (26) are approximated with upwind finite differences.

Equation (3) can be written in the finite-difference form as:

$$ h^{n + 1} = h^{n} - \frac{\Delta t}{R\;\sin \theta }\left[ {\left( {\frac{{\left( {M_{i,j}^{{n + \frac{1}{2}}} - M_{i - 1,j}^{{n + \frac{1}{2}}} } \right)}}{\Delta \varphi } + \frac{{\left( {N_{i,j}^{{n + \frac{1}{2}}} \sin \left( \theta \right) - N_{i,j - 1}^{{n + \frac{1}{2}}} \sin \left( {\theta - \Delta \theta } \right)} \right)}}{\Delta \theta }} \right)} \right]. $$
(28)

At time \( t = n\Delta t \), we calculate \( M^{{n + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \) and \( N^{{n + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \) by substituting \( h^{n} \), \( M^{{n - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \), and \( N^{{n - {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \) into Eqs. (14) and (26). These equations are solved by use of an iterative method (Gauss–Seidel method) (Press et al. 1986). The calculated \( M^{{n + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \) and \( N^{{n + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \) are substituted into Eq. (28) to obtain \( h^{n + 1} \). Then \( h^{n + 1} \), \( M^{{n + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \), and\( N^{{n + {\raise0.7ex\hbox{$1$} \!\mathord{\left/ {\vphantom {1 2}}\right.\kern-0pt} \!\lower0.7ex\hbox{$2$}}}} \) are used to solve Eqs. (14), (26), and (28) at the next time step.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baba, T., Takahashi, N., Kaneda, Y. et al. Parallel Implementation of Dispersive Tsunami Wave Modeling with a Nesting Algorithm for the 2011 Tohoku Tsunami. Pure Appl. Geophys. 172, 3455–3472 (2015). https://doi.org/10.1007/s00024-015-1049-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-015-1049-2

Keywords

Navigation