Skip to main content
Log in

Evidence for Nonlinear Coupling of Solar and ENSO Signals in Indian Temperatures During the Past Century

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Significant fluctuations have been observed in Indian temperatures during past century. In order to identify the statistical periodicities in the maximum and minimum temperature data of different Indian zones, we have spectrally and statistically analyzed the homogeneous regional temperature series from the Western Himalayas, the Northern West, the North Central, the North East (NE), the West Coast, the East Coast, and the Interior Peninsula for the period of 107 years spanning over 1901–2007 using the multitaper method (MTM) and singular spectrum analysis (SSA) methods. The first SSA reconstructed the principal component of all the data sets representing a nonlinear trend (indicating a monotonic rise in temperature probably due to greenhouse gases and other forcing) that varies from region to region. We have reconstructed the temperature time series using the second to tenth oscillatory principal components of all the eight regions and computed their power spectral density using MTM. Our analyses indicate that there is a strong spectral power in the period range of 2–7 years and 53 years, which are matched respectively with the known El Niño–Southern oscillation (ENSO) periods and ocean circulation cycles. Further, the spectral analysis also revealed a statistically significant but riven cycle in a period range of 9.8–13 years corresponding to the Schwabe cycle in all Indiaian maximum and minimum temperature records and almost all the zonal records except in the NE data. In some of the cases, the 22 year double sunspot (Hale cycle) cycle was also identified here. Invariably the splitting of spectral peaks corresponding to solar signal indicated nonlinear characteristics of the data and; therefore, even small variations in the solar output may help in catalyzing the coupled El Niño-atmospheric ENSO cycles by altering the solar heat input to the oceans. We, therefore, conclude that the Indian temperature variability is probably driven by the nonlinear coupling of ENSO and solar activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Appenzeller, C., Stocker, T. F., and Anklin, M. (1998). North Atlantic Oscillation Dynamics Record in Greenland Ice Cores. Science, 282(5388), 446–449.

  • Ball, W. T., Unruh, Y. C., Krivova, N. A., Solanki, S., Wenzler, T., Mortlock, D. J., and Jaffe, A. H. (2012). Reconstruction of total solar irradiance 1974–2009. Astronomy and Astrophysics, 541, doi:10.1051/0004-6361/201118702.

  • Banholzer, S., and Donner, S. (2014). The influence of different El Nino types on global average temperature. Geophys. Res. Lett., 41, doi:10.1002/2014GL059520.

  • Barnett, T.P., et al. (1989). The effect of Eurasian snow cover on regional and global climate variations. J. Atmos. Sci., 48, 661–685.

  • Budyko, M. I. (1969). The effect of solar radiation variations on the climate of the Earth. Tellus, 21, 611–619.

  • Chowdary, J.S., Gnanaseelan, C., Vaid, B.H., and Salvekar, P.S. (2006). Changing trends in the tropical Indian Ocean SST during La Nina years. Geophys. Res. Lett., 33, L18610. doi:10.1029/2006GL026707.

  • Chowdary, J. S., John, N., and Gnanaseelan, C. (2014). Interannual variability of surface air-temperature over India: impact of ENSO and Indian Ocean Sea surface temperature. Int. J. Climatol., 34, 416–429.

  • Dong, Lu, and Tianjun Zhou (2014). The Indian Ocean Sea Surface Temperature Warming Simulated by CMIP5 Models during the Twentieth Century: Competing Forcing Roles of GHGs and Anthropogenic Aerosols. J. Climate, 27, 3348–3362.

  • Feng, S.H., Kaufman, D., Yoneji, S., Nelson, D., Shemesh, A., Huang, Y., Tian, J., Bond, G., Benjamin, C., and Brown, T. (2003). Cyclic Variation and Solar Forcing of Holocene Climate in the Alaskan Subarctic. Science, 301, 1890–1893.

  • de Freitas, C., and Mclean, J. (2013). Update of the Chronology of Natural Signals in the Near-Surface Mean Global Temperature Record and the Southern Oscillation Index. International Journal of Geosciences, 4 (1), 234–239.

  • Friis, C.E., and Lassen, K. (1991). Length of the Solar Cycle: An Indicator of Solar Activity Closely Associated with Climate. Science, 254 (5032), 698–700.

  • Friis, C.E., and Svensmark, H. (1997). What do we really know about the sun- climate connection?, Adv. Space Res., 20, 415, 913–9211.

  • Frohlich, C., and Lean, J. (2004). Solar radiative output and its Variability: Evidence and Mechanisms. The Astron Astropys Rev., 12, 273–320.

  • Golyandina, N., Nekrutkin, V., and Zhigljavsky, A. A. (2001). Analysis of Time Series Structure: SSA and Related Techniques. Chapman and Hall/CRC Monographs on Statistics and Applied Probability, Taylor and Francis.

  • Gray, W. M., Sheaffer, J. D., and Knaff, J. A. (1992). Hypothesized mechanism for stratospheric QBO influence on ENSO variability. Geophy. Res. Let., 19, 107–110.

  • Horel, J. D., and Wallace, J. M. (1981). Planetary-scale atmospheric phenomena associated with the Southern Oscillation. Mon. Wea. Rev.,109, 813–829.

  • IMD. (1999). Tables of Climatological Normals : 1951-80, India Meteorological Department (IMD), Pune, 350 pp.

  • Kasatkina, E.A., Shumilov, O.I., and Krapiec, M.(2007). On periodicities in long term climatic variations near 68°N, 30°E. Adv. Geosci, 13, 25–29.

  • Kiladis, G.N., and Diaz, F.H. (1989). Global Climatic Anomalies Associated with Extremes in the Southern Oscillation. J. Climate, 2, 1069–1090.

  • Kodera, K. (2005). Possible solar modulation of the ENSO cycle, Pap. Meteorol. Geophys., 55, 21–32.

  • Kothwale, D.R., and Rupakumar, K. (2005). On the recent changes in surface temperature trends over India, Geophys. Res. Lett., 32, L18714.

  • Kothawale, D.R., Munot, A.A., and Krishna Kumar, K. (2010). Surface air temperature variability over India during 1901-2007 and its association with ENSO. Climate Research, 42, 89–104, doi:10.3354/cr00857.

  • Kothawale, D.R., Krishna Kumar, K., and Srinivasan, G. (2012). Spatial asymmetry of temperature trends over India and possible role of aerosols. Theor. Appl. Climatol., 110, 263–280.

  • Krivova, N. A., Vieira, L. E. A., and Solanki, S. K. (2010). Reconstruction of solar spectral irradiance since the Maunder minimum. J. Geophys. Res., 115, A12112, doi:10.1029/2010JA015431.

  • Lean, J., Beer, J., and Bradley, R. (1995). Reconstruction of solar irradiance.since 1610: Implications for climate change. Geophy.Res.Lett., 22, 3195-3198.

  • Lentner, C. (1982). Geigy Scientific Tables. Introduction to Statistics, Statistics Tables and Mathematical Formulae, 8th edn. Novartis (formerly Ciba Geigy) publisher, ISBN 13: 9780914168515.

  • Meehl, G.A., Arblaster, J.M., Matthes, K., Sassi, F., and van Loon, H. (2009). Amplifying the Pacific climate system response to a small 11-year solar cycle forcing. Science, 325, 1114–1118.

  • Meehl, G. A., Arblaster, J. M., and Marsh, D. R. (2013). Could a future “Grand Solar Minimum” like the Maunder Minimum stop global warming?. Geophys. Res. Lett., 40, 1789–1793.

  • McPhaden, M.J., Zebiak, S.E., and Glantz, M.H. (2006). ENSO as an Integrating Concept in Earth Science. Science, 314(5806), 1740–1745.

  • Minobe, S. (1999). Resonance in bidecadal and pent decadal climate oscillations over the North Pacific: Role in climatic regime shifts. Geophysical Research Letters, 26, 855–858.

  • Mokhov, I. I., Eliseev, A.V., Handorf, D., Petukhov, V.K., Dethloff, K., Weishiemer A., and Khvorost’yanov, D. V. (2000). North Atlantic Oscillation: Diagnosis and simulation of decadal variability and its long period evolution. Atmospheric and Ocean physics, 36, 555–565.

  • Nicholson, S. E. (1997). An analysis of the Enso signal in the tropical Atlantic and western Indian oceans. Int. J. Climatol., 17, 345–375.

  • Pant, G.B., and Rupa Kumar, K. (1997). Climates of South Asia. John Wiley and Sons, Chichester, 320 pp.

  • Proctor, C.J., Baker, A., and Barnes, W. L. (2002). A three thousand year record of North Atlantic Climate. Clim.Dyn, 19, 449–454.

  • Rajesh, R., Tiwari, R.K., Dhanam, K., and Seshunarayana, T. (2014). T-x frequency filtering of High Resolution Seismic Reflection data using Singular Spectral Analysis. Journal of Applied Geophysics, doi:10.1016/j.jappgeo.2014.03.017.

  • Rasmusson, E. M., and Carpenter, T. H. (1982). Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Niño. Mon. Wea. Rev., 110, 354–384.

  • Rigozo, N. R., Nordeman, D. J. R., Echer, E., Vieira, L. E. A., Echer M. P. S. and Presets, A.(2005). Tree-ring width wavelet and spectral analysis of solar variability and climatic effects on a Chilean cypress during the last two and a half millennia. Climate of the Past Discussions, 1, 121–135.

  • Rigozo, N. R., Nordeman, D.J.R., Silva, H.E., Echer, M.P.S. and Echer, E. (2007). Solar and climate signal records in tree ring width from Chile (AD1587–1994). Planetary and Space Science, 55, 158–164.

  • Scafetta, N. (2012). Multi-scale harmonic model for solar and climate cyclical variation throughout the Holocene based on Jupiter-Saturn tidal frequencies plus the 11-year solar dynamo cycle. Journal of Atmospheric and Solar-Terrestrial Physics, doi:10.1016/j.jastp.2012.02.016.

  • Schlesinger, M. E., and Ramankutty, N. (1994). An oscillation in the global climate system of period 65–70 years. Nature, 367(6465), 723–726.

  • Steinhilber, F., Beer, J. and Frohlich, C. (2009). Total solar irradiance during the Holocene. Geophys. Res. Lett., 36, L19704.

  • Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proc. IEEE, 70(9), 1055–1096.

  • TiwKari, R.K., and Rao, K.N.N. (2004). Signature of ENSO signals in the coral growth rate record of Arabian sea and Indian monsoons. Pure and Applied Geophysics, 161(2), 413–427.

  • Tiwari, R.K. (2005). Geospectroscpy, Capital Publishing, Capital-publishing Company.

  • Tiwari, R.K., and Rajesh, R. (2014). Imprint of long-term solar signal in groundwater recharge fluctuation rates from Northwest China. Geophys. Res. Lett., 41(9), 3103–3109.

  • Tiwari, R.K., and Srilakshmi, S. (2009). Periodicities and non-stationary modes in tree rings temperature variability record of the western Himalayas by Multi taper and wavelet spectral analysis. Current Science, 97, 705–709.

  • Tsonis, A. A., Elsner, J. B., Hunt, A. G., and Jagger, T. H. (2005). Unfolding the relation between global temperature and ENSO. Geophy.Res.Lett.,32, L09701.

  • Vautard, R., and Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Phys. D, 35, 395–424.

  • Wang, C., and Picaut, J. (2004). Understanding ENSO physics—A review, in Earth’s Climate: The Ocean–Atmosphere Interaction. Geophys. Monogr. Ser., 147, 21–48.

  • White, W. B., and Liu Z.(2008a) Resonant excitation of the quasi-decadal oscillation by the 11-year signal in the Sun’s irradiance. J. Geophys. Res., 113, C01002.

  • White, W. B., and Liu, Z. (2008b). Non-linear alignment of El Niño to the 11-yr solar cycle Geophys. Res. Lett., 35, L19607.

  • White, W. B., and Tourre, Y. M. (2003). Global SST/SLP waves during the 20th century. Geophys. Res. Lett., 30(12), 165.

  • Wiles, G. C., D’Arrigo, R. D., and Jacoby, G. C. (1998). Gulf of Alaska atmosphere-ocean variability over recent centuries inferred from coastal tree-ring records, Climatic Change, 38, 289–306.

  • Yasunari, T. (1985). Zonally propagating modes of the global east–west circulation associated with the Southern Oscillation. J. Meteorol. Soc. J., 63, 1013–1029.

  • Yu, J.Y. and Kim. (2012). Identifying the types of major ElNiño events, since1870. Int. J. Clim., 33(8), 2105–2112.

  • Zhou, Q., Chen, W., and Zhou, W. (2013). Solar cycle modulation of the ENSO impact on the winter climate of East Asia. J. Geophys. Res., 118, 5111–5119, doi:10.1002/jgrd.50453.

Download references

Acknowledgments

The Authors thank Director, CSIR - NGRI for his permission to publish this work under the contribution CSIR 12FYP project PSC0204 (INDEX). Second and third authors are also grateful to CSIR for SRF and Internship funding respectively. We thank anonymous reviewers and editors for their valuable suggestion to improve the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rekapalli Rajesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, R.K., Rajesh, R. & Padmavathi, B. Evidence for Nonlinear Coupling of Solar and ENSO Signals in Indian Temperatures During the Past Century. Pure Appl. Geophys. 172, 531–543 (2015). https://doi.org/10.1007/s00024-014-0929-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0929-1

Keywords

Navigation