Skip to main content
Log in

A Study on the Influence of the Land Surface Processes on the Southwest Monsoon Simulations using a Regional Climate Model

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

Influence of the land surface processes as an important mechanism in the development of the Indian Summer Monsoon is studied by performing simulations with a regional atmospheric model. Seasonal scale simulations are conducted for two contrasting summer monsoons (MJJAS months) in 2008 & 2009 with the Weather Research and Forecasting-Advanced Research regional model at a high resolution of 15 km using the boundary conditions derived from the National Centers for Environmental Prediction (NCEP) reanalysis data and using the NOAH land surface parameterization scheme. Simulations are evaluated by comparison of precipitation with 0.5° India Meteorological Department gridded rainfall data over land, atmospheric circulation fields with 1° resolution NCEP global final analysis, and surface fluxes with 0.75° resolution Era-Interim reanalysis. Results indicated significant variation in the evolution of the surface fluxes, air temperatures and flux convergence in the 2 contrasting years. A lower albedo, higher heating (sensible, latent heat fluxes), higher air temperatures, stronger flow and higher moisture flux convergence are noted over the subcontinent during the monsoon 2008 relative to the monsoon 2009. The simulated surface fluxes are in good comparison with observations. The stronger flow in 2008 is found to be associated with stronger heat flux gradients as well as stronger north-south geopotential/pressure gradients. The simulations revealed notable differences in many features such as zonal and meridional surface sensible heat gradients which, in turn, influenced the low-level pressure gradients, wind flow, and moisture transport. The present study reveals that, even at a regional scale, the physical processes of land-surface energy partitioning do influence the regional behavior of the monsoon system to a certain extent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Betts, A.K, Miller M.J. (1986), A new convective adjustment scheme. Part II: single column tests using GATE wave, BOMEX, and arctic air-mass data sets. Q. J. R. Meteorol. Soc. 112, 693–709.

  • Bhaskaran, B., Jones, R.G., Murphy, J.M., Noguer, M. (1996), Simulations of the Indian summer monsoon using a nested regional climate model: Domain size experiments. Clim. Dyn. 12, 573–578.

  • Bhaskar Rao, D.V., Ashok, K., Yamagata, T. (2004), A numerical simulation study of the Indian summer monsoon of 1994 using NCAR MM5. J. Meteorol. Soc. Jpn. 82(6), 1755–1775.

  • Bollasina, M.A., Ming, Y. (2012), The role of land-surface processes in modulating the Indian monsoon annual cycle. Clim Dyn. doi:10.1007/s00382-012-1634-3.

  • Chen, F., Dudhia, J. (2001), Coupling and advanced land surfacehydrology model with the Penn State-NCAR MM5 modeling system. Part I: model implementation and sensitivity. Month. Weather. Rev. 129(4), 569–585.

  • Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli, P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N. Vitart, F. (2011), The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q.J.R. Meteorol. Soc., 137: 553–597. doi: 10.1002/qj.828.

  • Dey, B., Bhanu Kumar, O.S.R.U. (1982), An apparent relationship between Eurasian snow cover and the advance period of Indian summer monsoon. J. Appl. Meteorol. 21, 1929-1932.

  • Dickinson, R., Henderson-Sellers, A., Kennedy, P., Wilson, M. (1986), Biosphere-Atmosphere Transfer Scheme (BATS) for the NCAR community climate model, NCAR Tech Note, NCAR/TN-275 + STR.

  • Dudhia, J. (1989), Numerical study of convection observed during the Winter Monsoon Experiment using a mesoscale two-dimensional model. J. Atmos. Sci. 46, 3077–3107.

  • Dutta, S.K, Someshwar Das, Kar, S.C., Mohanty, U.C., and Joshi, P.C.(2009), Impact of vegetation on the simulation of seasonal monsoon rainfall over the Indian subcontinent using a regional model. J. Earth Syst. Sci. 118, No. 5, pp. 413–440.

  • Findlater, J. (1969), A major low level air current near the Indian Ocean during the northern summer. Q J Met Soc 95,362–380.

  • Goswami, B.N. (2012), South Asian Monsoon. In Intraseasonal Variability in the Atmosphere-Ocean Climate System. (Ed. Lau, W.K.-M.; Waliser, D.E.). XXXIII, 613 p. (http://www.springer.com/978-3-642-13913-0).

  • Hahn, D. J., J. Shukla (1976), An apparent relationship between Eurasian snow cover and Indian monsoon rainfall. J. Atmos. Sci., 33, 2461–2462.

  • Hari Prasad D, Venkata Srinivas, C., Venkata Bhaskar Rao, D., Anjaneyulu, Y. (2011), Simulation of Indian monsoon extreme rainfall events during the decadal period 2000-2009 using a high resolution mesoscale model. Advances in Geosciences. A6 22,31–48.

  • Henderson-Sellers, A. (1993), A factorial assessment of the sensitivity of the BATS land surface parameterization scheme. J Climate 6, 227–247.

  • Hong, S.Y., Noh, Y., Dudhia, J. (2006), A new vertical diffusion package with explicit treatment of entrainment processes. Mon. Wea. Rev. 134, 2318-2341.

  • Gao, Y., Ruby Leung, R., Salathé Jr E.P., Dominguez, F., Nijssen, B., Lettenmaier, D.P. (2012), Moisture flux convergence in regional and global climate models: Implications for droughts in the southwestern United States under climate change. Geophys. Res. Lett., 39, L09711, doi:10.1029/2012GL051560.

  • IMD (India Meteorological Department) (2009), Monsoon 2008 – A Report. In : (Eds: Ajit Tyagi, H.R.Hatwar, D.S.Pai), IMD Met. Monograph No: Synoptic Meteorology No.7/2009. National Climate Centre, India Meteorological Department, Govt of India, Ministry of Earth Sciences, Pune-411005. India.

  • IMD (India Meteorological Department) (2010), Monsoon 2009 - A Report. In : (Eds: Ajit Tyagi, H.R.Hatwar, D.S.Pai), IMD Met Monograph No: Synoptic Meteorology No. 09/2010, National Climate Centre, India Meteorological Department, Govt of India, Ministry of Earth Sciences, Pune-411005. India.

  • IMD (India Meteorological Department). (2012), Monsoon Monograph Volume I. (Eds: Ajit Tyagi, G.C.Asnani, U.S.De, H.R.Hatwar, Mazumdar, A.B) Govt. of India, Ministry of Earth Sciences.

  • Janjic, Z.I. (2000), Comments on ”Development and Evaluation of a Convection Scheme for Use in Climate Models”, J. Atmos. Sci. 57, 3686.

  • Jiang, X., Li, J. (2011), Influence of the annual cycle of sea surface temperature on the monsoon onset. J. Geophysical Res. 116, D10105, doi:10.1029/2010JD015236 201.

  • Kalnay, E., Kanamitsu, M., Kistler, R., Collins, W., Deaven, D., Gandin, L., Iredell, M., Saha, S.,White, G.,Woollen, J, Zhu, Y., Chelliah, M., Ebisuzaki, W., Higgins, W., Janowiak, J., Mo, K.C., Ropelewski, C., Wang, J., Leetmaa, A., Reynolds, R., Jenne, R., and Joseph, D. (1996), The NMC/NCAR 40-year reanalysis project. Bull. Am. Meteorol. Soc. 77, 437–471.

  • Lau, K.M., Bua, W. (1998), Mechanisms of monsoon-Southern Oscillation coupling: Insights from GCM experiments, Clim. Dyn. 14, 759–779.

  • Lee, E., Barford, C.C., Kucharik, C.J., Felzer, B.S., Foley, J.A. (2011), Role of Turbulent Heat Fluxes over Land in the Monsoon over East Asia, Int. J. Geosci. 2, 420-431.

  • Lestari, R. K., Iwasaki, T. (2006), A GCM study on the roles of the sea-sonal marches of the SST and land‐sea thermal contrast in the onset of the Asian summer monsoon, J. Meteorol. Soc. Jpn. 84, 69–83. doi:10.2151/jmsj.84.69.

  • Li, W., Xue, Y. Poccard, I. (2007), Numerical Investigation of the Impact of Vegetation Indices on the Variability of West African Summer Monsoon. J. Meteorol. Soc. Jpn. 85A, 363–383.

  • Li, Q., Xue, Y. (2010), Simulated impacts of land cover change on summer climate in the Tibetan Plateau. Environ. Res. Lett. 5, 015102, 12 pp. IOP Publishing. doi:10.1088/1748-9326/5/1/015102.

  • Lin Y.L., Farley R.D., Orville H.D. (1983), Bulk parameterization of the snow field in a cloud model. J. Climate Appl. Meteor., 22, 1065–1092.

  • Liu, X., Yanai, M. (2002), Influence of Eurasian spring snow cover on Asian summer rainfall, Int. J. Climatol. 22(9), 1075–1089.

  • Meehl, G. A. (1994), Influence of the land surface in the Asian summer monsoon: External conditions versus internal feedbacks. J. Clim., 7, 1033–1049.

  • Mlawer,E.J., Taubman, S.J., Brown, P.D., Iacono, M.J., Clough, S.A. (1997), Radiative transfer for inhomogene.ous atmosphere: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. 102(D14), 16663–16682.

  • Mukopadhyay, P., Taraphdar, S., Goswami, B.N., Krishnakumar, K. (2010), Indian Summer Monsoon Precipitation Climatology in a High resolution-Regional Climate Model: Impacts of Convective Parameterization on Systematic Biases. Wea. Forecas. 25, 369-387.

  • Murphy, A.H., Winkler, R.L. (1987), A general framework for forecast verification. Monthly Weather Review, 115, 1330–1338.

  • Noh, Y., Cheon, W.G., Hong S.Y., Raasch, S. (2003), Improvement of the K-profile model for the planetary boundary layer based on large eddy simulation data. Boundary Layer Meteorology 107, 401–427.

  • Noilhan, J., Planton, S. (1989), A simple parameterization of land surface processes for meteorological models. Mon Wea Rev 117(3),536–549.

  • Preethi.B., Revadekar, J.V., Kripalani, R.H. (2011), Anomalous behavior of the Indian summer monsoon 2009. J. Earth Syst. Sci.120. No.5, pp.783–784.

  • Qu, X., Hall, A. (2006), Assessing snow albedo feedback in simulated climate change, J. Clim., 19, 2617–2630. doi:10.1175/JCLI3750.1.

  • Rajeevan, M., Bhate, J. (2008), A high resolution daily gridded rainfall data set (1971-2005) for mesoscale meteorological studies. NCC research report no.9, India Meteorlogical Department, Pune.

  • Saha, S.K., Halder, S., Krishna Kumar, K., Goswami, B.N. (2011), Pre-onset land surface processes and ‘internal’ interannual variabilities of the Indian summer monsoon. Clim Dyn. 36, 2077–2089. doi:10.1007/s00382-010-0886-z.

  • Sellers, P., Mintz, Y., Sud, Y., Dalcher, A. (1986), A simple biosphere model (SiB) for use with general circulation models. J Atmos Sci. 43,505–531.

  • Singh, A.P., Mohanty, U.C., Sinha, P., Mandal, M. (2007), Influence of different land surface processes on Indian Summer Monsoon circulation. Nat. Hazards. 42, 423-438. doi:10.1007/s11069-006-9079-9.

  • Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.Y., Wang, W., Powers, J.G. (2008), A Description of the Advanced Research WRF Version 3. NCAR Technical Note, NCAR/TN-475 + STR. Mesoscale and Microscale Meteorology Division, National Center for Atmospheric Research, Boulder, Colorado, USA.

  • Srinivas, C.V., Hariprasad, D., Bhaskar Rao, D.V., Anjaneyulu, Y., Baskaran, B., Venkatrman, B. (2012), Simulation of the Indian summer monsoon regional climate using advanced research WRF model. Int. J. Climatol. 32. (wileyonlinelibrary.com) doi:10.1002/joc.3505.

  • Sud, Y. C., Walker, G. K., Mehta, V. M., Lau, W. K. M. (2002), Relative importance of the annual cycles of sea surface temperature and solar irradiance for tropical circulation and precipitation: A climate model simulation study.Earth Interactions, 6. (Available online at ttp://EarthInteractions.org.).

  • Ueda, H., Iwai, A., Kuwako, K., Hori, M.(2006), Impact of anthropogenic forcing on the Asian summer monsoon as simulated by eight GCMs, Geophys. Res. Lett., 33, L06703, doi:10.1029/2005GL025336.

  • Ueda, H., Ohba, M., Xie, S.P. (2009), Important Factors for the Development of the Asian–Northwest Pacific Summer Monsoon. J. Climate, 22, 649–669.

  • Webster, P. J., Magana, V., Palmer, T.N., Shukla, J., Tomas, R.A., Yanai, M., Yasunari. T. (1998), Monsoons: Processes, predictability, and the prospects for prediction, J. Geophys. Res., 103(C7), 14,451–14,510.

  • Webster, P. J. (1987), The elementary monsoons, in Monsoons. (Eds : J. F. Fein, P. L. Stephens) pp. 3–32, John Wiley, New York.

  • WCRP (World Climate Research Programme).(1992), Simulation of interannual and intraseasonal monsoon variability. Rep Workshop, National Center for Atmospheric Research, Boulder, Colorado, USA, 21–24 October 1991. WMO/TD- No. 470, WMO, Geneva.

  • Wu, G., Sun, L., Liu, Y., Liu, H., Sun, S., Li, W. (2002), Impacts of land surface processes on summer climate, in Selected Papaers of the Fourth Conference on East Asia and Western Pacific Meteorology and Climate, edited by C. P. Chang et al., pp. 64 – 76, World Sci., River Edge, N. J.

  • Xue, Y. Zeng, F.J., Mitchell, K.E., Janjic, Z., Rogers, E. (2001), Impact of Land Surface Processes on Simulations of the U.S. Hydrological Cycle: A Case Study of the 1993 Flood Using the SSiB Land Surface Model in the NCEP Eta Regional Model. Mon. Wea. Rev. 129, 2833-2834.

  • Xue, Y. Juang, H.M.H., Li, W.P., Prince, S., DeFries, R., Jiao, Y., and Vasic. R. (2004), Role of land surface processes in monsoon development: East Asia and West Africa. J. Geophys. Res. 109, D03105, doi:10.1029/2003JD003556, 2004.

  • Xue, Y., Sales, F.De., Li, W.P., Mechoso, C.R., Nobre, C.A., Juang, H.M. (2006), Role of Land Surface Processes in South American Monsoon Development. J. Climate. 19, 741–762.

  • Xue, Y. (1996), The impact of desertification in the Mongolian and the Inner Mongolian Grassland on the regional climate, J. Clim. 9, 2173–2189.

  • Yang, S., Lau, K.M. (2006), Interannual variability of the Asian monsoon. In : The Asian Monsoon (Ed: Wang, B), pp. 259–293, Springer, New York.

  • Yasunari, T. (2007), Role of Land-Atmosphere Interaction on Asian Monsoon Climate. J. Meteorol. Soc. Jpn. 85B, pp. 55–75.

  • Yasunari, T., Kazuyuki, S., Kumiko, T. (2006), Relative Roles of Large-Scale Orography and Land Surface Processes in the Global Hydroclimate. Part I: Impacts on Monsoon Systems and the Tropics. J. Hydrometeor, 7, 626–641. doi:10.1175/JHM515.1.

Download references

Acknowledgments

The authors thank Sri S.A.V.Sathya Murty, Director EIRSG, for encouragement and support. The NCEP Reanalysis data was provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their Web site http://www.esrl.noaa.gov/psd/. The Era-Interim reanalysis was obtained from the ECMWF through web site http://data-portal.ecmwf.int/data/d/interim_daily/. The authors acknowledge the NCEP, USA for the use of the NNRP/FNL analysis data, the ECMWF for the use of ERA reanalysis, and the India Meteorological Department for the gridded rainfall observations used in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. V. Srinivas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Srinivas, C.V., Bhaskar Rao, D.V., Hari Prasad, D. et al. A Study on the Influence of the Land Surface Processes on the Southwest Monsoon Simulations using a Regional Climate Model. Pure Appl. Geophys. 172, 2791–2811 (2015). https://doi.org/10.1007/s00024-014-0905-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-014-0905-9

Keywords

Navigation