Skip to main content
Log in

Stress Release and Source Scaling of the 2010–2011 Canterbury, New Zealand Earthquake Sequence from Spectral Inversion of Ground Motion Data

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The Canterbury earthquake sequence beginning with the 2010 M W 7.2 Darfield earthquake is one of the most notable and well-recorded crustal earthquake sequences in a low-strain-rate region worldwide and as such provides a unique opportunity to better understand earthquake source physics and ground motion generation in such a tectonic setting. Ground motions during this sequence ranged up to extreme values of 2.2 g, recorded during the February 2011 M W 6.2 event beneath the city of Christchurch. A better understanding of the seismic source signature of this sequence, in particular the stress release and its scaling with earthquake size, is crucial for future ground motion prediction and hazard assessment in Canterbury, but also of high interest for other low-to-moderate seismicity regions where high-quality records of large earthquakes are lacking. Here we present a source parameter study of more than 200 events of the Canterbury sequence, covering the magnitude range M W 3–7.2. Source spectra were derived using a generalized spectral inversion technique and found to be well characterized by the ω −2 source model. We find that stress drops range between 1 and 20 MPa with a median value of 5 MPa, which is a factor of 5 larger than the median stress drop previously estimated with the same method for crustal earthquakes in much more seismically active Japan. Stress drop scaling with earthquake size is nearly self-similar, and we identify lateral variations throughout Canterbury, in particular high stress drops at the fault edges of the two major events, the M W 7.2 Darfield and M W 6.2 Christchurch earthquakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aki, K. (1967). Scaling law of seismic spectrum. J. Geophys. Res. 72, 1217–1231, doi:10.1029/JZ072i004p01217.

    Google Scholar 

  • Allmann, B.P., and Shearer, P.M. (2007). Spatial and temporal stress drop variations in small earthquakes near Parkfield, California. J. Geophys. Res. 112, B04305, doi:10.1029/2006JB004395.

  • Ameri, G., Oth, A., Pilz, M., Bindi, D., Parolai, S., Luzi, L., Mucciarelli, M., and Cultrera, G. (2011). Separation of source and site effects by generalized inversion technique using the aftershock recordings of the 2009 L’Aquila earthquake. Bull. Earthq. Eng. 9, 717–739, doi:10.1007/s10518-011-9248-4.

  • Anderson, J.G., and Hough, S.E. (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies. Bull. Seismol. Soc. Am. 74, 1969–1993.

    Google Scholar 

  • Andrews, D.J. (1986). Objective determination of source parameters and similarity of earthquakes of different size. In Earthquake Source Mechanics, S. Das, J. Boatwright, and C.H. Scholz, eds. (Washington DC: American Geophysical Union).

  • Baltay, A., Prieto, G., and Beroza, G.C. (2010). Radiated seismic energy from coda measurements and no scaling in apparent stress with seismic moment. J. Geophys. Res. 115, B08314, doi:10.1029/2009JB006736.

  • Bannister, S., and Gledhill, K. (2012). Evolution of the 2010–2012 Canterbury earthquake sequence. New Zealand J. Geol. Geophys. 55, 295–304, doi:10.1080/00288306.2012.680475.

  • Beavan, J., Motagh, M., Fielding, E.J., Donnelly, N., and Collett, D. (2012). Fault slip models of the 2010–2011 Canterbury, New Zealand, earthquakes from geodetic data and observations of postseismic ground deformation. New Zealand J. Geol. and Geophys., 55, 207–221.

    Google Scholar 

  • Boore, D.M. (2003). Simulation of ground motion using the stochastic method. Pure Appl. Geophys. 160, 635–676.

  • Boore, D.M., and Boatwright, J. (1984). Average body-wave radiation coefficients. Bull. Seismol. Soc. Am. 74, 1615–1621.

    Google Scholar 

  • Bradley, B.A. (2012). Strong ground motion characteristics observed in the 4 September 2010 Darfield, New Zealand earthquake. Soil Dyn. Earthq. Eng. 42, 32–46, doi:10.1016/j.soildyn.2012.06.004.

  • Brune, J.N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes. J. Geophys. Res. 75, 4997–5009.

    Google Scholar 

  • Brune, J.N. (1971). Correction. J. Geophys. Res. 76, 5002.

  • Castro, R.R., Anderson, J.G., and Singh, S.K. (1990). Site response, attenuation and source spectra of S waves along the Guerrero, Mexico, subduction zone. Bull. Seismol. Soc. Am. 80, 1481–1503.

    Google Scholar 

  • Choy, G.L., and Boatwright, J.L. (1995). Global patterns of radiated seismic energy and apparent stress. J. Geophys. Res. 100, 18205–18228.

    Google Scholar 

  • Cotton, F., Archuleta, R., and Causse, M. (2013). What is Sigma of the Stress Drop? Seismol. Res. Lett. 84, 42–48, doi:10.1785/0220120087.

  • Di Giacomo, D., Parolai, S., Bormann, P., Grosser, H., Saul, J., Wang, R., and Zschau, J. (2010). Suitability of rapid energy magnitude determinations for emergency response purposes. Geophys. J. Int. 180, 361–374, doi:10.1111/j.1365-246X.2009.04416.x.

  • Fry, B., and Gerstenberger, M.C. (2011). Large Apparent Stresses from the Canterbury Earthquakes of 2010 and 2011. Seismol. Res. Lett. 82, 833–838, doi:10.1785/gssrl.82.6.833.

  • Fry, B., Benites, R., and Kaiser, A. (2011). The Character of Accelerations in the Mw 6.2 Christchurch Earthquake. Seismol. Res. Lett. 82, 846–852, doi:10.1785/gssrl.82.6.846.

  • Fry, B., Eberhart-Phillips, D., and Davey, F. (2013). Mantle accommodation of lithospheric shortening as seen by combined interferometry and body-wave imaging in the South Island, New Zealand, submitted to Geophys. J. Int.

  • Gledhill, K., Ristau, J., Reyners, M., Fry, B., and Holden, C. (2011). The Darfield (Canterbury, New Zealand) Mw 7.1 Earthquake of September 2010: A Preliminary Seismological Report. Seismol. Res. Lett. 82, 378–386, doi:10.1785/gssrl.82.3.378.

  • Haines, A.J. (1981). A local magnitude scale for New Zealand earthquakes. Bull. Seismol. Soc. Am. 71, 275–294.

    Google Scholar 

  • Hanks, T.C. (1982). fmax. Bull. Seismol. Soc. Am. 72, 1867–1879.

  • Hanks, T.C., and Kanamori, H. (1979). A moment magnitude scale. J. Geophys. Res. 84, 2348–2350.

    Google Scholar 

  • Hanks, T.C., and Thatcher, W. (1972). A graphical representation of seismic source parameters. J. Geophys. Res. 77, 4393–4405.

    Google Scholar 

  • Holden, C. (2011). Kinematic Source Model of the 22 February 2011 Mw 6.2 Christchurch Earthquake Using Strong Motion Data. Seismol. Res. Lett. 82, 783–788, doi:10.1785/gssrl.82.6.783.

  • Irikura, K. (1986). Prediction of strong acceleration motion using empirical Green’s function. Proceedings of 7th Japan Earthquake Engineering Symposium, 151–156.

  • Kaiser, A., Holden, C., Beavan, J., Beetham, D., Benites, R., Celentano, A., Collett, D., Cousins, J., Cubrinovski, M., Dellow, G., Denys, P., Ficlding, E., Fry, B., Gerstenberger, M., Langridge, R., Massey, C., Motagh, M., Pondard, N., McVerry, G., Ristau, J., Stirling, M., Thomas, J., Uma, S.R., and Zhao, J. (2012). The Mw 6.2 Christchurch earthquake of February 2011: Preliminary report. New Zealand J. Geol. Geophys. 55, 67–90, doi:10.1080/00288306.2011.641182.

  • Kanamori, H., and Rivera, L. (2004). Static and dynamic scaling relations for earthquakes and their implications for rupture speed and stress drop. Bull. Seismol. Soc. Am. 94, 314–319.

    Google Scholar 

  • Konno, K., and Ohmachi, T. (1998). Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88, 228–241.

    Google Scholar 

  • Madariaga, R. (1976). Dynamics of an expanding circular fault. Bull. Seismol. Soc. Am. 66, 639–666.

  • Mayeda, K., and Malagnini, L. (2010). Source radiation invariant property of local and near-regional shear-wave coda: Application to source scaling for the Mw 5.9 Wells, Nevada sequence. Geophys. Res. Lett. 37, L07306, doi:10.1029/2009GL042148.

  • Menke, W. (1989). Geophysical Data Analysis: Discrete Inverse Theory (New York: Academic Press).

  • Orense, R.P., Kiyota, T., Yamada, S., Cubrinovski, M., Hosono, Y., Okamura, M., and Yasuda, S. (2011). Comparison of liquefaction features observed during the 2010 and 2011 Canterbury earthquakes. Seismol. Res. Lett. 82, 905–918, doi:10.1785/gssrl.82.6.905.

  • Oth, A., Bindi, D., Parolai, S., and Di Giacomo, D. (2010). Earthquake scaling characteristics and the scale-(in)dependence of seismic energy-to-moment ratio: Insights from KiK-net data in Japan. Geophys. Res. Lett. 37, L19304, doi:10.1029/2010GL044572.

  • Oth, A., Parolai, S., and Bindi, D. (2011a). Spectral Analysis of K-NET and KiK-net Data in Japan, Part I: Database Compilation and Peculiarities. Bull. Seismol. Soc. Am. 101, 652–666, doi:10.1785/0120100134.

  • Oth, A., Bindi, D., Parolai, S., and Di Giacomo, D. (2011b). Spectral Analysis of K-NET and KiK-net Data in Japan, Part II: On Attenuation Characteristics, Source Spectra, and Site Response of Borehole and Surface Stations. Bull. Seismol. Soc. Am. 101, 667–687, doi:10.1785/0120100135.

  • Oth, A. (2013). On the characteristics of earthquake stress release variations in Japan. Earth Planet. Sci. Lett., 377–378, 132–141, doi:10.1016/j.epsl.2013.06.037.

  • Papageorgiou, A.S., and Aki, K. (1983). A specific barrier model for the quantitative description of inhomogeneous faulting and the prediction of strong ground motion. Part I. Description of the model. Bull. Seismol. Soc. Am. 73, 693–722.

    Google Scholar 

  • Parolai, S., and Bindi, D. (2004). Influence of soil-layer properties on k evaluation. Bull. Seismol. Soc. Am. 94, 349–356.

    Google Scholar 

  • Petersen, T., Gledhill, K., Chadwick, M., Gale, N.H., and Ristau, J. (2011). The New Zealand National Seismograph Network. Seismol. Res. Lett. 82, 9–20, doi:10.1785/gssrl.82.1.9.

  • Quigley, M., Villamor, P., Furlong, K., Beavan, J., Van Dissen, R., Litchfield, N., Stahl, T., Duffy, B., Bilderback, E., Noble, D., Barrell, D., Jongens, R., and Cox, S. (2010). Previously Unknown Fault Shakes New Zealand’s South Island. Eos Trans. AGU 91, 49.

  • Ristau, J. (2008). Implementation of Routine Regional Moment Tensor Analysis in New Zealand. Seismol. Res. Lett. 79, 400–415, doi:10.1785/gssrl.79.3.400.

  • Ristau, J. (2013). Update of Regional Moment Tensor Analysis for Earthquakes in New Zealand and Adjacent Offshore Regions, Bull. Seismol. Soc. Am., 103, in press.

  • Ristau, J., Holden, C., Kaiser, A., Williams, C., Bannister, S., and Fry, B. (2013). The Pegasus Bay aftershock sequence of the Mw 7.1 Darfield (Canterbury), New Zealand earthquake. Submitted to Geophys. J. Int.

  • Shearer, P.M., Prieto, G.A., and Hauksson, E. (2006). Comprehensive analysis of earthquake source spectra in southern California. J. Geophys. Res. 111, B06303, doi:10.1029/2005JB003979.

  • Singh, S.K., and Ordaz, M. (1994). Seismic energy release in Mexican subduction zone earthquakes. Bull. Seismol. Soc. Am. 84, 1533–1550.

    Google Scholar 

  • van Houtte, C., Ktenidou, O.-J., Larkin, T., and Kaiser, A. (2012). Reference stations for Christchurch. Bull. New Zealand Soc. Earthq. Eng. 45, 184–195.

  • Viegas, G., Abercrombie, R.E., and Kim, W.-Y. (2010). The 2002 M5 Au Sable Forks, NY, earthquake sequence: Source scaling relationships and energy budget. J. Geophys. Res. 115, B07310, doi:10.1029/2009JB006799.

  • Wallace, L.M., Beavan, J., McCaffrey, R., Berryman, K., Denys, P. (2007). Balancing the plate motion budget in the South Island, New Zealand using GPS, geological and seismological data. Geophys. J. Int. 168: 332–352, doi:10.1111/j.1365-246X.2006.03183.x

Download references

Acknowledgments

We wish to thank the staff involved in the GeoNet project for making the databases available, as well as Martin Reyners for providing additional phase picks used in window selection. GeoNet (www.geonet.org.nz) is sponsored by the New Zealand Government through the Earthquake Commission (EQC), GNS Science and Land Information New Zealand (LINZ). This research was supported by the New Zealand Natural Hazards Platform. We furthermore thank Rachel Abercrombie and an anonymous reviewer for constructive comments that helped to improve the paper, and Bill Fry for fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrien Oth.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 92 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oth, A., Kaiser, A.E. Stress Release and Source Scaling of the 2010–2011 Canterbury, New Zealand Earthquake Sequence from Spectral Inversion of Ground Motion Data. Pure Appl. Geophys. 171, 2767–2782 (2014). https://doi.org/10.1007/s00024-013-0751-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0751-1

Keywords

Navigation