Skip to main content
Log in

What Do Data Used to Develop Ground-Motion Prediction Equations Tell Us About Motions Near Faults?

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A large database of ground motions from shallow earthquakes occurring in active tectonic regions around the world, recently developed in the Pacific Earthquake Engineering Center’s NGA-West2 project, has been used to investigate what such a database can say about the properties and processes of crustal fault zones. There are a relatively small number of near-rupture records, implying that few recordings in the database are within crustal fault zones, but the records that do exist emphasize the complexity of ground-motion amplitudes and polarization close to individual faults. On average over the whole data set, however, the scaling of ground motions with magnitude at a fixed distance, and the distance dependence of the ground motions, seem to be largely consistent with simple seismological models of source scaling, path propagation effects, and local site amplification. The data show that ground motions close to large faults, as measured by elastic response spectra, tend to saturate and become essentially constant for short periods. This saturation seems to be primarily a geometrical effect, due to the increasing size of the rupture surface with magnitude, and not due to a breakdown in self similarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  • Aki, K. (1967). Scaling law of seismic spectrum, J. Geophys. Res. 72, 1217–1231.

    Google Scholar 

  • Ancheta, T.D., R.B. Darragh, J.P. Stewart, E. Seyhan, W.J. Silva, B.S.-J. Chiou, K.E. Wooddell, R.W. Graves, A.R. Kottke, D.M. Boore, T. Kishida, and J.L. Donahue (2013). PEER NGA-West2 Database, PEER Report 2013/03, Pacific Earthquake Engineering Research Center, University of California, Berkeley, 170 pp.

  • Ancheta, T.D., R.B. Darragh, J.P. Stewart, E. Seyhan, W.J. Silva, B.S.-J. Chiou, K. E. Wooddell, R. W. Graves, A. R. Kottke, D. M. Boore, T. Kishida, and J.L. Donahue (2014). NGA-West2 database, Earthquake Spectra 30, (in review).

  • Anderson, J.G. and S.E. Hough (1984). A model for the shape of the Fourier amplitude spectrum of acceleration at high frequencies, Bull. Seismol. Soc. Am. 74, 1969–1993.

  • Atkinson, G.M. and W. Silva (2000). Stochastic modeling of California ground motions, Bull. Seismol. Soc. Am. 90, 255–274.

  • Baltay, A.S. and T.C. Hanks (2014). Understanding the magnitude dependence of PGA and PGV in NGA-West2 data, Bull. Seismol. Soc. Am. 104, (in review).

  • Ben-Zion, Y. and C.G. Sammis (2003). Characterization of fault zones, Pure appl. Geophys. 160, 677–715.

  • Beroza, G.C. and P. Spudich (1988). Linearized inversion for fault rupture behavior: Application to the 1984 Morgan Hill, California, earthquake, J. Geophys. Res. 93, 6275–6296.

  • Bommer, J.J. and D.M. Boore (2005). Engineering Geology: Seismology, in Encyclopaedia of Geology, R. C. Selley, L. Robin M. Cocks, and Ian R. Plimer (Editors), Elsevier Ltd., doi:10.1016/B0-12-369396-9/90020-0, 499–515.

  • Boore, D.M. (2003a). Prediction of ground motion using the stochastic method, Pure and Applied Geophysics 160, 635–676.

  • Boore, D.M. (2003b). A compendium of P- and S-wave velocities from surface-to-borehole logging: Summary and reanalysis of previously published data and analysis of unpublished data, U. S. Geological Survey Open-File Report 03-191, 13 pp. Available from http://geopubs.wr.usgs.gov/open-file/of03-191/.

  • Boore, D.M. (2009). Comparing stochastic point-source and finite-source ground-motion simulations: SMSIM and EXSIM, Bull. Seismol. Soc. Am. 99, 3202–3216.

    Google Scholar 

  • Boore, D.M. (2013). The uses and limitations of the square-root impedance method for computing site amplification, Bull. Seismol. Soc. Am. 103, 2356–2368.

    Google Scholar 

  • Boore, D.M. and W.B. Joyner (1997). Site amplifications for generic rock sites, Bull. Seismol. Soc. Am. 87, 327–341.

  • Boore, D.M., V.M. Graizer, A.F. Shakal, and J.C. Tinsley (2004). A study of possible ground-motion amplification at the Coyote Lake Dam, California, Bull. Seismol. Soc. Am. 94, 1327–1342.

  • Boore, D.M., E.M. Thompson, and H. Cadet (2011). Regional correlations of V s 30 and velocities averaged over depths less than and greater than 30 m, Bull. Seismol. Soc. Am. 101, 3046–3059.

  • Boore, D.M., J.P. Stewart, E. Seyhan, and G.M. Atkinson (2014). NGA-West 2 equations for predicting PGA, PGV, and 5%-Damped PSA for shallow crustal earthquakes, Earthquake Spectra 30, (in press).

  • Borcherdt, R.D., M.J.S. Johnston, G. Glassmoyer, and C. Dietel (2006). Recordings of the Parkfield 2004 earthquake on the GEOS array: implications for earthquake precursors, fault rupture, and coseismic strain changes, Bull. Seismol. Soc. Am. 96, S73–S89.

  • Bozorgnia, Y., N.A. Abrahamson, L. Al Atik, T.D. Ancheta, G.M. Atkinson, J.W. Baker, A. Baltay, D.M. Boore, K.W. Campbell, B.S.-J. Chiou, R. Darragh, S. Day, J. Donahue, R.W. Graves, N. Gregor, T. Hanks, I.M. Idriss, R. Kamai, T. Kishida, A. Kottke, S.A. Mahin, S. Rezaeian, B. Rowshandel, E. Seyhan, S. Shahi, T. Shantz, W. Silva, P. Spudich, J.P. Stewart, J. Watson-Lamprey, K. Wooddell, and R. Youngs (2014). NGA-West2 Research Project, Earthquake Spectra 30, (in review).

  • Brune, J.N. (1970). Tectonic stress and the spectra of seismic shear waves from earthquakes, J. Geophys. Res.75, 4997–5009.

    Google Scholar 

  • Brune, J.N. (1971). Correction, J. Geophys. Res. 76, 5002.

  • Cadet, H. and A.-M. Duval (2009). A shear wave velocity study based on the KiK-net borehole data: A short note, Seismol. Res. Letters 80, 440–445.

    Google Scholar 

  • Caine, S., J.P. Evans, and C.B. Forster (1996). Fault zone architecture and permeability structure, Geology 24, 1025–1028.

  • Cultrera, G., A. Rovelli, G. Mele, R. Azzara, A. Caserta, and F. Marra (2003). Azimuth-dependent amplification of weak and strong ground motions within a fault zone (Nocera Umbra, central Italy), J. Geophys. Res. 108, 2156, doi:10.1029/2002JB001929, 14 pp.

  • Eberhart-Phillips, D., and A. J. Michael (1993). Three-dimensional velocity structure, seismicity, and fault structure in the Parkfield region, central California, J. Geophys. Res. 98, 15,737–15,758.

    Google Scholar 

  • Fletcher, J.B., L.M. Baker, P. Spudich, P. Goldstein, J.D. Sims, and M. Hellweg (1992). The USGS Parkfield, California, dense seismograph array: UPSAR, Bull. Seismol. Soc. Am. 82, 1041–1070.

  • Fletcher, J. B., P. Spudich, and L. M. Baker (2006). Rupture propagation of the 2004 Parkfield, California, earthquake from observations at the UPSAR array, Bull. Seismol. Soc. Am. 96, S129–S142.

    Google Scholar 

  • Hanks, T.C. (1975). Strong ground motion of the San Fernando, California, earthquake: ground displacements, Bull. Seismol. Soc. Am. 65, 193–225.

    Google Scholar 

  • Hanks, T.C. and H. Kanamori (1979). A moment magnitude scale, J. Geophys. Res. 84, 2348–2350.

  • Hanks, T.C. and R.K. McGuire (1981). The character of high-frequency strong ground motion, Bull. Seismol. Soc. Am. 71, 2071–2095.

  • Joyner, W.B. and D.M. Boore (1981). Peak horizontal acceleration and velocity from strong-motion records including records from the 1979 Imperial Valley, California, earthquake, Bull. Seismol. Soc. Am. 71, 2011—2038.

  • Kurzon, I., F.L.Vernon, Y. Ben-Zion, and G. Atkinson (2014). Ground motion prediction equations in the San Jacinto Fault Zone –Significant effects of rupture directivity and fault zone amplification, Pure and Applied Geophysics 171, (in review).

  • Lewis, M.A. and Y. Ben-Zion (2010). Diversity of fault zone damage and trapping structures in the Parkfield section of the San Andreas Fault from comprehensive analysis of near fault seismograms, Geophys. J. Int. 183, 1579–1595.

    Google Scholar 

  • Liu, H.-L. and D.V. Helmberger (1983). The near-source ground motion of the 6 August 1979 Coyote Lake, California, earthquake, Bull. Seismol. Soc. Am. 73, 201–218.

  • Liu, P., S. Custodio, and R. J. Archuleta (2006). Kinematic inversion of the 2004 M 6.0 Parkfield earthquake including an approximation to site effects, Bull. Seismol. Soc. Am. 96, S143–S158.

  • Motazedian, D. and G.M. Atkinson (2005). Stochastic finite-fault modeling based on a dynamic corner frequency, Bull. Seismol. Soc. Am. 95, 995–1010.

    Google Scholar 

  • Pischiutta, M., A. Rovelli, F. Salvini, G. Di Giulio, and Y. Ben-Zion (2013). Directional resonance variations across the Pernicana Fault, Mt Etna, in relation to brittle deformation fields, Geophys. J. Int., doi:10.1093/gji/ggt031, 11 pp.

  • Raoof, M. R.B. Herrmann, and L. Malagnini (1999). Attenuation and excitation of three-component ground motion in Southern California, Bull. Seismol. Soc. Am. 89, 888–902.

  • Sandıkkaya, M.A., M.T. Yılmaz, B.S. Bakır, and Ö. Yılmaz (2010). Site classification of Turkish national strong-motion stations, J. Seismol.14, 543–563.

  • Scherbaum, F., F. Cotton, and H. Staedtke (2006).The estimation of minimum-misfit stochastic models from empirical ground-motion prediction equations, Bull. Seismol. Soc. Am. 96, 427–445, doi:10.1785/0120050015.

  • Seyhan, E. and J.P. Stewart (2014). Semi-empirical nonlinear site amplification from NGA-West 2 data and simulations, Earthquake Spectra 30, (in review).

  • Shakal, A., H. Haddadi, V. Graizer, K. Lin, and M. Huang (2006). Some key features of the strong-motion data from the M 6.0 Parkfield, California, earthquake of 28 September 2004, Bull. Seismol. Soc. Am. 96, S90–S118.

  • Spudich, P. and K.B. Olsen (2001). Fault zone amplified waves as a possible seismic hazard along the Calaveras fault in central California, Geophys. Res. Letters 28, 2533–2536.

    Google Scholar 

  • Thurber, C., H. Zhang, F. Waldhauser, J. Hardebeck, A. Michael, and D. Eberhart-Phillips (2006). Three-dimensional compressional wavespeed model, earthquake relocations, and focal mechanisms for the Parkfield, California, region, Bull. Seismol. Soc. Am. 96, S38–S49.

  • Toro, G.R. (2002). Modification of the Toro et al. (1997) attenuation relations for large magnitudes and short distances: Risk Engineering, Inc. report, http://www.riskeng.com/PDF/atten_toro_extended.pdf.

  • Wang, G.-Q., G.-Q. Tang, C. R. Jackson, X.-Y. Zhou, and Q.-L. Lin (2006). Strong ground motions observed at the UPSAR during the 2003 San Simeon ( M 6.5) and 2004 Parkfield ( M 6.0), California, earthquakes, Bull. Seismol. Soc. Am. 96, S159–S182.

  • Yamada, M., A.H. Olsen, and T.H. Heaton (2009). Statistical features of short-period and long-period near-source ground motions, Bull. Seismol. Soc. Am. 99, 3264–3274.

  • Zhao, P., Z. Peng, Z. Shi, M.A. Lewis, and Y. Ben-Zion (2010). Variations of the velocity contrast and rupture properties of M 6 earthquakes along the Parkfield section of the San Andreas fault, Geophys. J. Int. 180, 765–780.

Download references

Acknowledgments

I thank Yehuda Ben-Zion and Antonio Rovelli for the invitation to attend the 40th Workshop of the International School of Geophysics on PROPERTIES AND PROCESSES OF CRUSTAL FAULT ZONES in Erice, Sicily, Italy, May 18–24, 2013, and for the encouragement to prepare a paper based on my talk. I also thank Joe Fletcher, Tony Shakal, and Paul Spudich for providing figures, Chris Dietel for corrected station coordinates for the GEOS stations, and Annemarie Baltay, Carola Di Alessandro, Tom Hanks, and an anonymous person for constructive reviews that led to significant improvements in the article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Boore.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boore, D.M. What Do Data Used to Develop Ground-Motion Prediction Equations Tell Us About Motions Near Faults?. Pure Appl. Geophys. 171, 3023–3043 (2014). https://doi.org/10.1007/s00024-013-0748-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0748-9

Key words

Navigation