Skip to main content
Log in

Sea Ice Dynamics Induced by External Stochastic Fluctuations

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

The influence of stochastic fluctuations in the atmosphere and in the ocean caused by different occasional phenomena (noises) on dynamic processes of sea ice growth with a mushy layer is studied. It is shown that atmospheric temperature variances substantially increase the sea ice thickness, whereas dispersion variations of turbulent flows in the ocean to a great extent decrease the ice content produced by false bottom evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Aagard, K., and Carmack, E. (1994). The arctic ocean and climate: a perspective, in The Polar Regions and Their Role in Shaping the Global Environment, ed by Johannessen, O.M., Muench, R.D., and Overland, J.E. Geophys. Monogr. Ser. 85, AGU, pp. 5–20.

  • Alexandrov, D.V., and Malygin, A.P. (2006a). Analytical description of seawater crystallization in ice fissures and their influence on heat exchange between the ocean and the atmosphere. Dokl. Earth Sci. 411A, 1407–1411.

  • Alexandrov, D.V., and Malygin, A.P. (2006b). Self-similar solidification of an alloy from a cooled boundary. Int. J. Heat Mass Transf. 49, 763–769.

    Google Scholar 

  • Alexandrov, D.V., Malygin, A.P., and Alexandrova, I.V. (2006). Solidification of leads: approximate solutions of non-linear problem. Ann. Glaciol. 44, 118–122.

    Google Scholar 

  • Alexandrov, D.V., and Malygin, A.P. (2011a). Convective instability of directional crystallization in a forced flow: The role of brine channels in a mushy layer on nonlinear dynamics of binary systems. Int. J. Heat Mass Transf. 54, 1144–1149.

  • Alexandrov, D.V., and Malygin, A.P. (2011b). Nonlinear dynamics of phase transitions during seawater freezing with a false bottom formation. Oceanology 51, 940–948.

    Google Scholar 

  • Alexandrov, D.V., and Nizovtseva, I.G. (2008). To the theory of underwater ice evolution, or nonlinear dynamics of “false bottoms”. Int. J. Heat Mass Transf. 51, 5204–5208.

  • Alexandrov, D.V., Nizovtseva, I.G., Lee, D., and Huang, H.-N. (2010). Solidification from a cooled boundary with a mushy layer under conditions of nonturbulent and turbulent heat and mass transfer in the ocean. Int. J. Fluid Mech. Res. 37, 1–14.

    Google Scholar 

  • Anishchenko, V.S., Astakhov, V.V., Neiman, A.B., Vadivasova, T.E., and Schimansky-Geier, L., Nonlinear Dynamics of Chaotic and Stochastic Systems. Tutorial and Modern Development (Springer-Verlag, Berlin/Heidelberg 2007).

  • Badgley, F.J. (1966). Heat budget at the surface of the Arctic Ocean, in Proceedings of Symposium on the Arctic Heat Budget and Atmospheric Circulation, ed by Fletcher, J.O. Santa Monica, CA, Rand Corporation, pp. 267–277.

  • Bashkirtseva, I., and Ryashko, L. (2009). Constructive analysis of noise-induced transitions for coexisting periodic attractors of Lorenz model. Phys. Rev. E 79, 041106-041114.

    Google Scholar 

  • Bashkirtseva, I., Chen, G., and Ryashko, L. (2012). Analysis of noise-induced transitions from regular to chaotic oscillations in the Chen system. Chaos 22, 033104.

    Google Scholar 

  • Bell, R.E. et al. (2011). Widespread persistent thickening of the East Antarctic ice sheet by freezing from the base. Science 331, 1592–1595.

  • Buyevich, Yu. A., Alexandrov, D.V., Mansurov, V.V., Macrokinetics of crystallization (Begell House, New York-Wallingford 2001) 183.

  • Eicken, H. (1994). Structure of under-ice melt ponds in the central Arctic and their effect on the sea-ice cover. Limnol. Oceanogr. 39, 682–694.

  • Eicken, H., Krouse, H.R., Kadko, D., and Perovich, D.K. (2002). Tracer studies of pathways and rates of meltwater transport through Arctic summer sea ice. J. Geophys. Res. 107, 8046.

    Google Scholar 

  • Fowler, A.C. (1985). The formation of freckles in binary alloys. IMA J. Appl. Maths. 35, 159–174.

  • Gardiner, C., A handbook for the natural and social sciences (Springer, Series in Senergetics 2009) 447.

  • Hanson, A.M. (1965). Studies of the mass budget of Arctic pack-ice floes. J. Glaciol. 5, 701–709.

  • Hayes, J., and Morison, J. (2008). Ice-ocean turbulent exchange in the Arctic summer measured by an autonomous underwater vehicle. Limnol. Oceanogr. 53, 2287–2308.

    Google Scholar 

  • Hills, R.N., Loper, D.E., and Roberts, P.H. (1983). A thermodynamically consistent model of a mushy zone. Q. J. Appl. Math. 36, 505–539.

  • Horsthemke, W., and Lefever, R., Noise-Induced Transitions (Springer, Berlin 1984).

  • Huppert, H.E., and Worster, M.G. (1985). Dynamic solidification of a binary melt. Nature 314, 703–707.

    Google Scholar 

  • Ivantsov, G.P. (1951). Diffusional supercooling during crystallization of a binary alloy. Dokl. Akad. Nauk SSSR 81, 179–182.

  • Jeffries, M.O., Schwartz, K., Morris, K., Veazey, A.D., Krouse, H.R., and Gushing, S. (1995). Evidence for platelet ice accretion in Arctic sea ice development. J. Geophys. Res. 100, 10,905–10,914.

    Google Scholar 

  • L’Hélvéder, B., and Houssais, M.-N. (2001). Investigating the variability of the Arctic sea ice thickness in response to a stochastic thermodynamic atmospheric forcing. Climate Dynamics, 17, 107–125.

  • Martin, S., and Kauffman, P. (1974). The evolution of under-ice melt ponds. J. Fluid Mech. 64, 507–527.

    Google Scholar 

  • Nansen, F., Farthest North (Harper and Brothers Rublishers, New York 1897) 714.

  • Notz, D., McPhee, M.G., Worster, M.G., Maykut, G.A., Schlünzen, K.H., and Eicken, H. (2003). Impact of underwater-ice evolution on Arctic summer sea ice. J. Geophys. Res. 108, 3223.

    Google Scholar 

  • Notz, D., Wettlaufer, J.S., Worster, M.G. (2005). A non-distructive method for measuring the salinity and solid fraction of growing sea ice in situ. J. Glaciol. 51, 159–166.

    Google Scholar 

  • Perovich, D.K., Grenfell, T.C., Richter-Menge, J.A., Light, B., Tucker, W.B., and Eicken, H. (2003). Thin and thinner: ice mass balance measurements during SHEBA. J. Geophys. Res. 108, 8050.

    Google Scholar 

  • Perovich, D.K., and Richter-Menge, J.A. (2000). Ice growth and solar heating in springtime leads. J. Geophys. Res. 105, 6541–6548.

    Google Scholar 

  • Perovich, D.K., and Richter-Menge, J.A. (2009). Loss of sea ice in the Arctic. Annu. Rev. Marine Sci. 1, 417–441.

    Google Scholar 

  • Rahmstorf, S. (1995). Bifurcations of the Atlantic thermohaline circulation in response to changes in the hydrological cycle. Nature 378, 145–149.

    Google Scholar 

  • Stefan, J. (1889a). Über einige Probleme der Theorie der Wärmeleitung. Sitzungsberichte de Mathematisch–Naturawissenschaftlichen Classe der Kaiserlichen, Akademie der Wissenschaften 98(2a), 473–484.

  • Stefan, J. (1889b). Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Sitzungsberichte de Mathematisch–Naturawissenschaftlichen Classe der Kaiserlichen, Akademie der Wissenschaften 98(2a), 965–983.

  • Stefan, J. (1891). Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere. Ann. Der Physik u. Chem., Neue Folge 42, 269–286.

  • The LeadEx Group (1993). The LeadEx experiment. EOS Trans. AGU 74, 393, 396–397.

  • Timmermann, R., Beckmann, A., and Hellmer, H.H. (2002). Simulations of ice-ocean dynamics in the Weddell Sea 1. Model configuration and validation. J. Geophys. Res. 107, 3024.

    Google Scholar 

  • Uusikivi, J., Ehn, J., and Granskog, M.A. (2006). Direct measurements of turbulent momentum, heat and salt fluxes under landfast ice in the Baltic Sea. Ann. Glaciol. 44, 42–46.

    Google Scholar 

  • Wadhams, P. (1988). The underside of Arctic sea ice imaged by sidescan sonar. Nature 333, 161–164.

  • Wettlaufer, J.S., Worster, M.G., and Huppert, H.E. (1997). Natural convection during solidification of an alloy from above with application to the evolution of sea ice. J. Fluid Mech. 344, 291–316.

  • Wettlaufer, J.S., Worster, M.G., and Huppert, H.E. (2000). Solidification of leads: theory, experiment, and field observations. J. Geophys. Res. 105, 1123–1134.

  • Worster, M.G. (1986). Solidification of an alloy from a cooled boundary. J. Fluid. Mech. 167, 481–501.

Download references

Acknowledgments

We are grateful for partial support from the Federal Target Program “Scientific and scientific-pedagogical personnel of innovative Russia” in 2009–2013 and the Russian Foundation for Basic Research (Project No. 11-01-00137).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitri V. Alexandrov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, D.V., Bashkirtseva, I.A., Malygin, A.P. et al. Sea Ice Dynamics Induced by External Stochastic Fluctuations. Pure Appl. Geophys. 170, 2273–2282 (2013). https://doi.org/10.1007/s00024-013-0664-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-013-0664-z

Keywords

Navigation