Skip to main content
Log in

Quantification of the Mass Flux of H2O Gas (Steam) at Three Active Volcanoes Using Thermal Infrared Imagery

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

We apply a measurement technique that utilizes thermal video of vapor-dominated volcanic plumes to estimate the H2O gas flux at three degassing volcanoes. Results are compared with H2O flux measurements obtained using other methods to verify the thermal camera-derived values. Our estimation of the H2O emission rate is based on the mass and energy conservation equations. H2O flux is quantified by extracting the temperature and width of the gas plume from the thermal images, calculating the transit velocity of the gas plume from the thermal video, and combining these results with atmospheric parameters measured on-site. These data are then input into the equations for conservation of mass and energy. Selected volcanoes for this study were Villarrica in Chile, Stromboli in Italy, and Santa Ana in El Salvador. H2O fluxes estimated from the thermal imagery were 38–250 kg s−1 at Villarrica, 4.5–14 kg s−1 for Stromboli’s Central Crater, and 168–219 kg s−1 at Santa Ana. These compare with H2O flux values estimated by other methods of 73–220, 3–70 and 266 kg s−1, at the three volcanoes, respectively. The good agreement between thermal image-derived results and those estimated by other methods seem to validate this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aiuppa, A., Federico, C., Paonita, A., Giudice, G., and Valenza, M., (2002). S, Cl and F degassing as an indicator of volcanic dynamics: The 2001eruption of Mount Etna, Geophys. Res. Lett. 29(11):1556, doi:10.1029/2002GL015032.

  • Allard, P., Carbonelle, J., Metrich, N., Loyer, H., and Zetwoog, P., (1994). Sulphur output and magma degassing budget of Stromboli volcano. Nature 368:326–330.

  • Bukumirovic, T., Italiano, F., Nuccio, P.M., (1997). The evolution of a dynamic geological system: the support of a GIS for geochemical measurements at the fumarole field of Vulcano, Italy. J. Volcanol. Geotherm. Res. 79:253–263.

  • Burton, M.R., Oppenheimer, O., Horrocks, L.A., and Francis, P.W., (2000). Remote sensing of CO 2 and H 2 O emission rates from Masaya volcano. Geology. 28:915–918. doi: 10.1130/0091-7613(2000)028<0915:RSOCAH>2.3.CO;2.

  • Burton, M. R., Allard, P., Mure, F., and Oppenheimer, C., (2003). FTIR remote sensing of fractional magma degassing at Mount Etna, Sicily, in Volcanic Degassing, edited by C. Oppenheimer, D. Pyle, and J. Barclay, Geol. Soc. London Spec. Pub. 213:281–293.

  • Fukui, K., (1995). H 2 O and heat discharged from Aso volcano in Noneruptive stage. Bull. Volcanol. Soc. Japan. 40:233–248.

  • Galle, B., Oppenheimer, C., Geyer, A., McGonigle, A.J.S., Edmonds, M., and Horrocks, L., (2002). A miniaturized ultraviolet spectrometer for remote sensing of SO 2 fluxes: a new tool for volcano surveillance. J. Volcanol. Geotherm. Res. 119:241–254.

  • Goff, J.A., and Gratch, S., (1946). Low-pressure properties of water from −160 to 212°F, in Transactions of the American Society of Heating and Ventilating Engineers, presented at the 52nd annual meeting of the American Society of Heating and Ventilating Engineers, New York, pp 95–122.

  • Goff, J. A., (1957). Saturation pressure of water on the new Kelvin temperature scale, Transactions of the American Society of Heating and Ventilating Engineers, presented at the semi-annual meeting of the American Society of Heating and Ventilating Engineers, Murray Bay, Que. Canada, pp 347–354

  • Gurioli, L., Harris, A.J.L., Houghton, B.F., Polacci, M., and Ripepe, M., (2008). Textural and geophysical characterization of explosive basaltic activity at Villarrica volcano. J. Geophys. Res. 113, B08206, doi:10.1029/2007JB005328.

  • Harris, A., and Ripepe M. (2007). Temperature and dynamics of degassing at Stromboli. J. Geophys. Res. 112, B03205, doi:10.1029/2006JB004393.

  • Horton, K.A., Williams-Jones, G., Garbeil, H., Elias, T., Sutton, A.J., Mouginis-Mark, P., Porter, J.N., and Clegg, S., (2006). Real-time measurement of volcanic SO 2 emissions: validation of a new UV correlation spectrometer (FLYSPEC). Bull. Volcanol. 68:323–327.

  • Italiano, F., Nuccio, P.M. (1992). Fumarolic steam output directly measured in fumaroles: Vulcano (Aeolian Islands, Italy) between 1983 and 1987. Bull. Volcanol. 54:623–630.

  • Italiano, F., Pecoraino, G., and Nuccio, P.M., (1998) Steam output from fumaroles of an active volcano: Tectonic and magmatic-hydrothermal controls on the degassing system at Vulcano (Aeolian arc). J. Geophys. Res. 103, B12:29,829–29,842.

  • Jinguuji, M., and Ehara, S., (1996). Estimation of steam and heat discharge of volcanic steam, Japan. Bull. Volcanol. Soc. Jpn. 41:23–29.

  • Kagiyama, T., (1978). Evaluation of heat discharge and H 2 O emission from volcanoes based on a plume rise assumption. Bull. Volcanol. Soc. Jpn. 23:183–197 (in Japanese with English abstract).

  • Kazahaya, K., Shinohara, H., and Saito, G., (1994). Excessive degassing of Izu-Oshima volcano: magma convection in a conduit. Bull. Volcanol. 56:207–216.

  • Matsushima, N., Kazahaya, K., Saito, G., and Shinohara, H., (2003). Mass and heat flux of volcanic gas discharging from the summit crater of Iwodate volcano, Satsuma Iwojima, Japan, during 1996–1999. J. Volcanol. Geotherm. Res. 126:285–301.

  • Matsushima, N. and Shinohara, H., (2006) Visible and invisible volcanic plumes. Geophys. Res. Lett., 33, L24309, doi:10.1029/2006GL026506.

  • Matsushima, N., (2005). H 2 O emission rate by the volcanic plume during the 2000–2002 Miyakejima volcanic activity. Geophys. Res. Lett. 32, L14307, doi:10.1029/2005GL023217.

  • McGonigle, A.J.S., Oppenheimer, C., Hayes, A.R., Galle, B., Edmonds, M., Caltabiano, T., Salerno, G., Burton, M., Mather, T.A., (2002). Sulphur dioxide fluxes from Mount Etna, Vulcano, and Stromboli measured with an automated scanning ultraviolet spectrometer. J. Geophys. Res. 108(B9):245, doi:10.1029/2002JB002261.

  • Morton, B.R., Taylor, G.I., Turner, J.S., (1956). Turbulent gravitational convection from maintained and gravitational sources. Proc. R. Soc. A234:1–23.

  • Palma, J.L., Calder, E.S., Basualto, D., Blake, S., Rothery, D.A., (2008). Correlations between SO 2 flux, seismicity, and outgassing activity at the open vent of Villarrica volcano, Chile. J. Geophys. Res. 113, B10201, doi:10.1029/2008JB005577.

  • Shinohara, H., Kazahaya, K., Saito, G., Matsushima, N. and Kawanabe, Y., (2002). Degassing activity from Iwodake rhyolitic cone, Satsuma-Iwojima volcano, Japan: Formation of a new degassing vent, 1990–1999. Earth Planets Space. 54:175–185.

  • Shinohara, H., (2005). A new technique to estimate volcanic gas composition: plume measurements with a portable multi-sensor system. J. Volcanol. Geotherm. Res. 143(4): 319–333.

  • Shinohara, H., and Witter, J.B., (2005). Volcanic gases emitted during mild Strombolian activity of Villarrica volcano, Chile. Geophys. Res. Lett. 32, L20308, doi: 10.1029/2005GL024131.

  • Stevenson, J.A. and Varley, N., (2008) Monitoring of fumaroles with a hand-held infrared camera at Volcán de Colima, Mexico, 2006–2007. J. Volcanol. Geotherm. Res. 177:911–924.

  • Stoiber, R.E., Jepsen, A., (1973). Sulfur dioxide contributions to the atmosphere by volcanoes. Science. 182:577–578.

  • Stoiber, R.E., Malinconico, L.L.,Williams, S.N., (1983). Use of the correlation spectrometer at volcanoes. In: Tazieff H, Sabroux JC (eds) Forecasting volcanic events. Elsevier, Amsterdam, pp 425–444.

  • Symonds, R., Rose, W., Bluth, G., and Gerlach, T., (1994). Volcanic -gas studies: Methods, results, and applications in Volatiles in Magmas, MR Carroll and JR Holloway, eds., Reviews in Mineralogy, Vol. 30; Mineralogical Society of America, Washington, D.C.

  • Witter, J. B., Kress, V.C., Delmelle, P., and Stix, J., (2004). Volatile degassing, petrology, and magma dynamics of the Villarrica Lava Lake, southern Chile. J. Volcanol. Geotherm. Res. 134: 303–337.

Download references

Acknowledgments

Field work at Santa Ana volcano was carried out thanks to assistance of the Office of the Spanish Agency for International Cooperation (AECI) in El Salvador, the Spanish Embassy in El Salvador and the staff of the Instituto de Ciencias de la Tierra, University of El Salvador, especially to Francisco Barahona and Carlos Hernández. We are indebted to the GRP of El Salvador’s Civil National Police for providing security during our stay in El Salvador. Santa Ana field work research was mainly supported by the Spanish Aid Agency (Agencia Española de Cooperación Internacional—AECI), and additional financial-aid was provided by the Cabildo Insular de Tenerife, Canary Islands, Spain. We thank Mike Burton for sharing the SO2 flux data he collected at Villarrica in November 2004. We also thank Matt Patrick for collecting the thermal imagery at Stromboli and Villarrica, where work was supported by NSF grants EAR-0207734 and EAR-0106349. We thank Y. Taran and two anonymous reviewers for their constructive comments that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Hernandez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Witter, J.B., Hernandez, P., Harris, A.J.L. et al. Quantification of the Mass Flux of H2O Gas (Steam) at Three Active Volcanoes Using Thermal Infrared Imagery. Pure Appl. Geophys. 169, 1875–1889 (2012). https://doi.org/10.1007/s00024-011-0446-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-011-0446-4

Keywords

Navigation