Skip to main content
Log in

Some Contributions of the Neo-Deterministic Seismic Hazard Assessment Approach to Earthquake Risk Assessment for the City of Sofia

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

This paper describes the outcome of the advanced seismic hazard and seismic risk estimates recently performed for the city of Sofia, based on the state-of-the-art of knowledge for this site. Some major results of the neo-deterministic, scenario-based, seismic hazard assessment approach (NDSHA) to the earthquake hazard assessment for the city of Sofia are considered. Further validations of the recently constructed synthetic strong motion database, containing site and seismic source-specific ground motion time histories are performed and discussed. Displacement and acceleration response spectra are considered. The elastic displacement response spectra and displacement demand are discussed with regard to earthquake magnitude, seismic source-to-site distance, seismic source mechanism, and local geological site conditions. The elastic response design spectrum from the standard pseudo-acceleration, versus natural period, T n, format, converted to a capacity diagram in S a − S d format is discussed in the perspective of the Eurocode 8 provisions. A brief overview of the engineering applications of the seismic demand obtained making use of the NDSHA is supplied. Some applications of the outcome of NDSHA procedure for engineering purposes are shown. The obtained database of ground shaking waveforms and time-histories, computed for city of Sofia is used to: (1) extract maximum particle velocities; (2) calculate the space distribution of the horizontal strain factor Log10 ε; (3) estimate liquefaction susceptibility in terms of standard penetration test, N values, and initial over burden stress; (4) estimate damage index distribution; and (5) map the distribution of the expected pipe breaks and red-tagged buildings for given scenario earthquakes, etc. The theoretically obtained database, based on the simultaneous treatment of the data from many disciplines, contains data fully suitable for practical use. The proper use of this database can lead to a significant seismic vulnerability reduction and thus contributes to earthquake preparedness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Alexiev, G., Georgiev, Tz. (1997), Morphotectonics and seismic activity of the Sofia depression. Bulgarian Academy of Sciences, J. Prob. Geogr. 1–2, 60–69.

  • Berrill, J., Davis, R. (1985), Energy dissipation and seismic liquefaction of sands, revised model, soils and foundations, Jpn. Soc. Soil Mech. Found. Eng. 25(2), 106.

  • Bommer, J. J., Elnashai, A. S. (1999), Displacement spectra for seismic design. J. Earthq. Eng. 3(1), 1–32.

  • Bonchev, E., Bune, V., Christoskov, L., Karagyuleva, J., Kostadinov, V., Reisner, G., Rizikova, S., Shebalin, N., Sholpo, V., Sokerova, D. (1982), A method for compilation of seismic zoning prognostic maps for the territory of Bulgaria, Geologica Balkanica 12(2), 3–48.

  • Brankov, G. (ed.), Vrancea Earthquake in 1977. Its after-effects in the People’s Republic of Bulgaria. Publ. House of the Bulg. Ac. of Sciences, 1983, p. 428; Sofia (in Bulgarian).

  • Christoskov, L., Sokerova, D., and Rizhikova, Sn. (1987), Catalogue of Historical Earthquakes in the Territory of Bulgaria (Geophysical Institute of Bulgarian Academy of Sciences, Sofia).

  • Christoskov, L., Georgiev, Tz., Dineva, D., and Babachkova, B. (1989), On the seismicity and seismic hazard of Sofia Valley. In Proc. 4th Int. Symp. 4–9 Sept., Bechine, pp. 447–453.

  • Cioflan, C.O., Apostol, B.F., Moldoveanu, C.L., Panza, G.F., Marmureanu, Gh. (2004), Deterministic Approach for the Seismic Microzonation of Bucharest, PAGEOPH 161, pp.1149–1164.

  • Decanini, L., Mollaioli, F., Panza, G. F., Romanelli, F., Vaccari, F. (2001), Probabilistic vs deterministic evaluation of seismic hazard and damage earthquake scenarios: a general problem, particularly relevant for seismic isolation. In Proc. 7th International Seminar on Seismic Isolation, Passive Energy Dissipation and Active Control of Vibrations of Structures, Assisi, Italy, October 2–5, 2001.

  • Decanini, L., Liberatore, L., Mollaioli, F. (2003), Characterization of displacement demand for elastic and inelastic SDOF systems, Soil Dyn. Earthq. Eng. 23, 455–471.

  • Dimova, S. L., Negro, P. (2005a), Seismic assessment of an industrial frame structure designed according to Eurocode. Part 1: experimental tests and their numerical simulation, Eng. Struct. 27, 709–723.

  • Dimova, S. L., Negro, P. (2005b), Seismic assessment of an industrial frame structure designed according to Eurocode. Part 2: capacity and vulnerability, Eng. Struct. 27, 724–735.

  • Dineva, P., Vaccari, F., Panza, G. F. (2003), Hybrid modal summation—BIE method for site effect estimation of a seismic region in a laterally varying media, J. Theor. Appl. Mech. Bulg. Acad. Sci. 33(4), 55–88.

  • Dineva, P., Paskaleva, I., La Mura, C., Panza, G. F. (2008), Hybrid MS-BIEM for seismic site-response phenomena: a case study of Sofia. In Harmonization of Seismic Hazard in Vrancea Zone, NATO Science Security series (eds. Zaichenco, Craifaleanu, Paskaleva) (Springer, Heidelberg) pp. 163–182.

  • Ding, Z., Romanelli, F., Chen, Y. T. and Panza, G. F., (2004a). Realistic modeling of seismic wave ground motion in Beijing city. PAGEOPH 161, 1093–1106.

  • Ding, Z., Chen, Y. T. and Panza, G. F., (2004b), Estimation of site effects in Beijing city. PAGEOPH 161, 1107–1123.

  • Fäh, D., Iodice, C., Suhadolc, P., Panza, G. F. (1993), A new method for the realistic estimation of seismic ground motion in megacities: The case of Rome, Earthq. Spectra. 9, 643–668.

  • Fäh, D., Iodice, C., Suhadolc, P., Panza, G. F. (1994a), Application of numerical simulations for a tentative seismic microzonation of the city of Rome, Annali di geofisica XXXVIII, 56, 607–615.

  • Fäh, D., Suhadolc, P., Mueller, St., Panza, G. F. (1994b), A hybrid method for the estimation of ground motion in sedimentary basins; quantitative modelling for Mexico city, BSSA 84, 383–399.

  • Fäh, D., Iodice, C., Suhadolc, P., Panza, G. F. (1995a), Application of numerical simulations for a tentative seismic microzonation of the city of Rome, Annali di Geofisica, XXXVIII, 56, 607–615.

  • Fäh, D., Suhadolc, P., Mueller, St., Panza, G. F. (1995b) A hybrid method for the estimation of ground motion in sedimentary basins; quantitative modelling for Mexico City, BSSA 84, 383–399.

  • Frangov, G., Ivanov, Pl. (1999), Engineering geological modeling of the conditions in the Sofia graben and land subsidence prognoses. In Proc. 4rth WG Meeting, Dec. 3–6, 1999, Sofia, pp.17–13.

  • Gusev, A. A. (1983), Descriptive statistical model of earthquake source radiation and its application to an estimation of short period strong motion, Geophys. J. R. Astron. Soc. 74, 787–800.

  • Gusev, A. A., Pavlov. V. (2006), Wideband simulation of earthquake ground motion by a spectrum-matching, multiple-pulse technique. In First European Conference on Earthquake Engineering and Seismology (a joint event of the 13th ECEE & 30th General Assembly of the ESC). Geneva, Switzerland, 3–8 September 2006. Paper Number 408.

  • Glavcheva, R. (1990), Parametrization of the isoseismal from Bulgarian earthquakes, Bulg. Geoph. J. XVI, 4, 38–44 (in Bulgarian).

  • Glavcheva, R., Georgiev, Tz., Botev, E., Babachkova, Bl., Toteva, T. (1996), Sofia graben and the earthquake of December 14 1995, Bulg. Geophys. J. XXII, 3, 44–50.

  • Ivanov, P., (1997), Assessment of the geological Conditions in the Sofia Kettle under seismic impact. In Proc. International IAEG Conference, Athens, 1997, Balkema, Rotterdam, pp. 1265–1270.

  • Kirov, K. (1952), A contribution to studying of the earthquakes in Sofia valley, An. Of main direction for geological and mine researches 5, 407–417 (in Bulgarian).

  • Klügel, J.-U. (2005), Problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants, Eng. Geol. 78, 285–307.

  • Klügel, J.-U., Mualchin, L., Panza, G. F. (2006), A scenario-based procedure for seismic risk analysis, Eng Geol 88 1–22, http://www.sciencedirect.com

  • Klügel, J.-U. (2007a) Error inflation in probabilistic seismic hazard analysis, Eng. Geol. 90, 186–192, http://www.sciencedirect.com.

  • Klügel, J.-U. (2007b) Comment on “Why Do Modern Probabilistic Seismic-Hazard Analyses Often Lead to Increased Hazard Estimates” by Julian J. Bommer and Norman A. Abrahamson, BSSA 97, 6. doi:10.1785/0120070018.

  • Kouteva, M., Panza, G.F., Romanelli, F., Paskaleva, I. (2004), Modelling of the ground motion at russe site (NE Bulgaria) due to the Vrancea earthquakes. J. Earthq. Eng. 8, 2, 209–229.

  • Lee, V., Paskaleva, I., Cao, H. (1990), A note on the attenuation of seismic intensity in Bulgaria and Romania. Soil Dyn. Earthq. Eng. 9, No3, 151–161.

  • Levander, A. R. (1988), Fourth-order finite-difference P-SV seismograms, Geophysics 53, 1425–1436.

  • Lokmer, I., Herak, M., Panza, G.F., Vaccari, F. (2002), Amplification of strong-ground motion in the city of Zagreb, Croatia, estimated by computation of synthetic seismograms, Soil Dyn. Earthq. Eng. 22, 105–113.

  • Matova, M. (2001), Recent manifestations of seismotectonic activity in Sofia region and their land subsidence potential. In Proc. Final Conf. of UNESCO—BAS Project on Land Subsidence, June 27–30, Sofia, pp. 93–98.

  • Medvedev, Sv. (1960), Seismic Engineering. Moscow (in Russian).

  • Medvedev, S. V. (1977), Seismic intensity scale MSK—76, Publ Inst Geophys Pol Acad Sci 117, 95–102.

  • Molchan, G., Kronrod, T., Panza, G. F. (1997), Multi-scale seismicity model for seismic risk, BSSA 87, 5, 1220–1229.

  • Nenov, D., Paskaleva, I., Georgiev, G., Trifunac, M. (1990), CATALOG of strong earthquake ground motion data in EQINFOS: Accelerograms recorded in Bulgaria between 1981 and 1987. Report No CE 90-02 (Sofia and Los Angeles, 1990, published in Southern California University).

  • Oncescu, M. C., Marza, V. I., Rizescu, M., Popa, M. (1999), The Romanian Earthquake Catalogue between 984–1997, in “Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation (eds. F. Wenzel, D. Lungu and (co-ed) O. Novak) (Kluwer, Dordrecht, Netherlands). Catalog under continuous update, pp. 43–47.

  • Orozova-Stanishkova, I., Slejko, D. (1994), Seismic hazard of Bulgaria, Nat Hazards 9, 247–271.

  • Orozova-Stanishkova, I., Costa, G., Vaccari, F., Suhadolc, P. (1996), Estimates of 1 Hz maximum accelerations in bulgaria for seismic risk reduction purposes, Tectonophysics 258, 263–274.

  • Petkov, I. and Christoskov, L. (1965), On Seismicity in the Region of the Town of Sofia Concerning the Macroseismic Zoning, Ann Sofia Univ 58, 163–179.

  • Panza, G. F. (1985), Synthetic seismograms: the Rayleigh waves modal summation. J. Geophys. 58, 125–45.

  • Panza, G. F., Suhadolc, P. (1987), Complete strong motion synthetics, in seismic strong motion synthetics. In Computational Techniques (ed. Bolt B. A.) (Academic Press, Orlando, Vol 4, 153–204.

  • Panza, G. F., Vaccari, F. (2000), Introduction in seismic hazard of the Circum-pannonian region. In Pageoph Topical Volumes (eds. Panza, G. F., Radulian, M., Trifu. C.) (Birkhauser Verlag: pp. 5–10).

  • Panza, G. F., Romanelli, F., Vaccari, F. (2001), Seismic wave propagation in laterally heterogeneous anelastic media: theory and applications to the seismic zonation, Adv. Geophys. 43, 1–95.

  • Panza, G. F., Alvarez, L., Aoudia, A., Ayadi, A., Benhallou, H., Benouar, D., Bus, Z., Chen, Y., Cioflan, C., Ding, Z., El-Sayed, A., Garcia, J., Garofalo, B., Gorshkov, A., Gribovszki, K., Harbi, A., Hatzidimitriou, P., Herak, M., Kouteva, M., Kuznetzov, I., Lokmer, I., Maouche, S., Marmureanu, G., Matova, M., Natale, M., Nunziata, C., Parvez, I.A., Paskaleva, I., Pico, R., Radulian, M., Soloviev, A., Suhadolc, P., Szeidovitz, G., Triantafyllidis, P. and Vaccari. F., (2002), Realistic modeling of seismic input for megacities and large urban areas (the UNESCO/IUGS/IGCP project 414). Episodes 253, 160–184.

  • Panza, G. F., Kouteva, M., Vaccari, F., Peresan A., Cioflan, C. O., Romanelli, F., Paskaleva, I., Radulian, M., Gribovszk, i K., Herak, M., Zaichenco, A., Marmureanu, G., Varga, P., Zivcic, M. (2008), Recent achievements of the neo-deterministic seismic hazard assessment in the CEI region. In Proc. of the 2008 seismic Engineering Conference, Reggio Calabria, Italy 8–11.07.2008 (eds A. Santini and N. Moraci) (American Institute of Physics, Melville, New York, AIP Conf. Proc., Vol. 1020, pp. 402–413).

  • Paskaleva, I., Kouteva, M., Panza, G.F., Evlogiev, J., Koleva, N., Ranguelov, B. (2001). Deterministic approach of seismic hazard assessment in Bulgaria; case study northeast Bulgaria—the town of Russe, Albanian J. Nat. Tech. Sci.10, 51–71.

  • Paskaleva, I. (2002), A contribution to the seismic risk assessment of the Sofia City. Report on CNR-NATO program, 65, Announcement, 219.33, May–October 2002, p. 100.

  • Paskaleva, I. (2003), A note on peak velocities and surface strains associated with strong earthquakes on the territory of Bulgaria and case study for Sofia. CD-ROM First international Conference Science and Technology for Safe Development of Life Line Systems, 4–5 Nov, 2003, Sofia.

  • Paskaleva, I., Matova, M., Frangov, G. (2004a) Expert assessment of the displacements provoked by seismic events: Case study for the Sofia metropolitan area. PAGEOPH 2004, Topical Volume 161, N5/6, Birkhauser Verlag pp. 1265–1283 (19) Seismic Ground Motion in Large Urban Areas (eds Panza, G.F., Paskaleva I., Nunziata, C.).

  • Paskaleva, I., Panza, G. F., Vaccari, F., Ivanov, P. (2004b), Deterministic modelling for microzonation of Sofia—an expected earthquake scenario. Acta Geod. Geoph. Hung. 39 (2–3), 275–295.

  • Paskaleva, I., Dimova, S., Panza, G. F., Vaccari, F. (2007), An earthquake scenario for the microzonation of Sofia and the vulnerability of structures designed by use of the Eurocodes, J. Soil Dyn. Earthq. Eng. 27,(11) 1028–1041.

  • Paskaleva, I., Kouteva, M., Vaccari, F., Panza, G. F. (2008), Application of the ne-deterministic seismic microzonation procedure in Bulgaria and validation of the seismic input against Eurocode 8. In Proc. of the 2008 Seismic Engineering Conference, Reggio Calabria, Italy 8–11.07.2008 (ed. A. Santini and N. Moraci) (American Institute of Physics, Melville, New York), AIP Conf. Proc., vol. 1020, pp. 394–402.

  • Petkov, I. and Christoskov, L. (1965), On seismicity in the region of the town of Sofia concerning the macroseismic zoning, Ann. Sofia Univ. 58, 163–179.

  • Ranguelov, B. (1996), Seismicity and site effects on the Sofia valley district, In Proc. 1 st WG meeting, Oct. 31–Nov. 3, Sofia, pp. 28–31.

  • Ranguelov, B. and Toteva, T. (1998), Recent seismicity observed around Sofia City, In Proc. 3rd WG meeting, Dec. 2–5, Sofia, pp. 7–9.

  • Reiter, L., Earthquake Hazard Analysis (Columbia University Press, New York, 1990, 254 pp.).

  • Romanelli, F., Nunziata, C., Natale, M. and Panza, G. F., (1998). Site response estimation in the Catania area. In The Effects of Surface Geology on Seismic Motion (eds Irikura. K., Kudo. K., Okada. H. and Sasatani. T.) (A. A. Balkema, Rotterdam) pp. 1093–1100.

  • Shanov, S., Tzankov, Tz., Nikolov, G., Bojkova, A., Kurtev, K. (1998), Character of the recent geodynamics of Sofia complex Graben. Rev. Bulg. Geol. Soc. 59, part I, 3–12.

  • Shebalin, N., Leydecker, G., Mokrushina, N., Tatevossian, R., Erteleva, O., Vassiliev, V. (1999), Earthquake Catalogue for Central and Southeastern Europe 342 bc–1990 ad, (European Commission, Report No. ETNU CT 93-0087) (1999).

  • Simeonova, S. D., Solakov, D. E., Leydecker, G., Busche, H., Schmitt, T., Kaiser, D. (2006), Probabilistic seismic hazard map for Bulgaria as a basis for a new building code, Nat. Hazards Earth Syst. Sci. 6, 881–887. http://www.nat-hazards-earth-syst-sci.net/6/881/2006/

  • Slavov, Sl. (2000), Ground Modelling in the City of Sofia (TRIL-ICTP), Visitor’s report.

  • Slavov, Sl., Paskaleva, I., Vaccari, F., Kouteva, M., Panza, G. F. (2004), Deterministic earthquake scenarios for the City of Sofia, PAGEOPH 161, N5/6, 1221–1237.

  • Solakov, D., Simeonova, St, Christoskov, L. (2001), Seismic hazard assessment for the Sofia area, Annali di Geofisica 44, No3, 541–556.

  • Stanishkova, I. and Slejko, D. (1991), Seismic hazard of the main Bulgarian cities, In Atti del 10o Convegno Annuale del Gruppo Nazionale di geologica della terra solida; Roma, 6–8 November, pp. 123–134.

  • Sun, R., Vaccari, F., Marrara, F., Panza, G. F. (1998), The main features of the local geological conditions can explain the macroseismic intensity caused in Xiji-langfu (Beijing) by the MS = 7.7 Tangshan 196 earthquake, PAGEOPH 152, 507–521.

  • Todorovska, M., Paskaleva, I., Glavcheva, R. (1995), Earthquake source parameters for seismic hazard assessment: examples of Bulgaria. In Proc. 10th ECEE, Vienna, Austria, pp. 2573–2578.

  • Triantafyllidis, P., Hatzidimitriou, P. M., Suhadolc, P., Theodulidis, N. and Pitilakis, K. (1998), Comparison between 1-D and 2-D site effects modelling. In The Effects of the Surface Geology on Seismic Motion (eds Irikura, K., Kudo, K., Okada H. and Sasatani, T.) (Balkema, Rotterdam, Vol. 2) pp. 981–986.

  • Trifunac, M. (1995), Empirical criteria for liquefaction in sands via standard penetration tests and seismic wave energy, Soil Dyn. Earthq. Eng. 14 (6) pp 419–426.

  • Trifunac, M. and Todorovska, M. (1997), Northridge California, earthquake 1994: density of pipe breaks and surface strains, Soil Dyn. Earthq. Eng. 16, 193–207.

  • Vaccari, F., Nunziata, C., Fäh, D., Panza, G. F. (1995), Reduction of seismic vulnerability of megacities: the cases of Rome and Naples. In Proc. 5th Int. Conf. on Seismic Zonation, EERI, Oct., Nice, France, pp. 1392–1399.

  • Virieux, J. (1984), SH–velocity–stress Finite-difference method: velocity-stress finite-difference method, Geophysics, 49, 1933–1957.

  • Virieux, J. (1986), P–SV wave propagation in heterogeneous media: velocity-stress finite-difference method, Geophysics 51, 889–901.

  • Wang, Z. (2005), Discussion on Klügel’s J.-U. problems in the application of the SSHAC probability method for assessing earthquake hazards at Swiss nuclear power plants, EngGeol, 78, 285–307; Eng. Geol. 82, 86–88.

  • Watzov, Sp (1902), Tremblements de terre en Bulgaria au XIX siecle, IMPR. DE L’ETAT, Sofia, Bulg., 95 (in Bulgarian).

International Projects:

  • RISK-UE-EVK4-CT-2000-00014 “An advanced approach to earthquake risk scenarios with applications to different European towns” Contract: EVK4-CT-2000-00014; WP4: Vulnerability of current buildings, WP13: Application to Sofia; http://www.risk-ue.net/

  • UNESCO-IUGS-IGCP Project 414 “Realistic Modelling of Seismic Input for Megacities and Large Urban Areas” (http://users.ictp.it/www_users/sand/unesco-414.html)

Seismic Codes and Regulations

  • Bulgarian Seismic Code for Design and Construction in Seismic Regions (1987), Sofia.

  • European Committee for Standardization (CEN). Eurocode 8—Design of Structures for Earthquake Resistance. Part 1: General Rules, Seismic Actions and Rules for Buildings. prEN 1998-1, Brussels, 2002.

Download references

Acknowledgments

CEI Projects “Deterministic seismic hazard analysis and zoning of the territory of Romania, Bulgaria and Serbia” and “Geodynamical Model of Central Europe For Safe Development Of Ground Transportation Systems”, the bilateral cooperation between DST–UNITS, Trieste, Italy and CLSMEE–BAS, Sofia, Bulgaria, the Comune di Trieste and the CEI University network are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Kouteva-Guentcheva.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paskaleva, I., Kouteva-Guentcheva, M., Vaccari, F. et al. Some Contributions of the Neo-Deterministic Seismic Hazard Assessment Approach to Earthquake Risk Assessment for the City of Sofia. Pure Appl. Geophys. 168, 521–541 (2011). https://doi.org/10.1007/s00024-010-0127-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-010-0127-8

Keywords

Navigation