Skip to main content
Log in

Bogoliubov Theory for Trapped Bosons in the Gross–Pitaevskii Regime

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider systems of N bosons in \({\mathbb {R}}^3\), trapped by an external potential. The interaction is repulsive and has a scattering length of the order \(N^{-1}\) (Gross–Pitaevskii regime). We determine the ground state energy and the low-energy excitation spectrum up to errors that vanish in the limit \(N\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adhikari, A., Brennecke, C., Schlein, B.: Bose–Einstein condensation beyond the Gross–Pitaevskii regime. Ann. Henri Poincaré 22, 1163–1233 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  2. Benedikter, N., de Oliveira, G., Schlein, B.: Quantitative derivation of the Gross–Pitaevskii equation. Commun. Pure Appl. Math. 64(8), 1399–1482 (2014)

    Article  MathSciNet  Google Scholar 

  3. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Complete Bose–Einstein condensation in the Gross–Pitaevskii regime. Commun. Math. Phys. 359(3), 975–1026 (2018)

    Article  MathSciNet  Google Scholar 

  4. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: The excitation spectrum of Bose gases interacting through singular potentials. J. Eur. Math. Soc. (2020). https://doi.org/10.4171/JEMS/966. arXiv:1704.04819

    Article  MATH  Google Scholar 

  5. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Bogoliubov theory in the Gross–Pitaevskii limit. Acta Math. 222(2), 219–335 (2019)

    Article  MathSciNet  Google Scholar 

  6. Boccato, C., Brennecke, C., Cenatiempo, S., Schlein, B.: Optimal rate for Bose–Einstein condensation in the Gross–Pitaevskii regime. Commun. Math. Phys. 376, 1311–1395 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  7. Bogoliubov, N.N.: On the theory of superfluidity. Izv. Akad. Nauk. USSR 11, 77 (1947) (Engl. Transl. J. Phys. (USSR) 11, 23, 1947)

  8. Boßmann, L., Petrat, S., Seiringer, R.: Asymptotic expansion of low-energy excitations for weakly interacting bosons. arXiv:2006.09825

  9. Brietzke, B., Fournais, S., Solovej, J.P.: A simple 2nd order lower bound to the energy of dilute Bose gases. Commun. Math. Phys. 376, 323–351 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  10. Brennecke, C., Schlein, B.: Gross–Pitaevskii dynamics for Bose–Einstein condensates. Anal. PDE 12(6), 1513–1596 (2019)

    Article  MathSciNet  Google Scholar 

  11. Brennecke, C., Schlein, B., Schraven, S.: Bose–Einstein condensation with optimal rate for trapped bosons in the Gross–Pitaevskii regime. Preprint: arXiv:2102.11052

  12. Dereziński, J., Napiórkowski, M.: Excitation spectrum of interacting bosons in the mean-field infinite-volume limit. Ann. Henri Poincaré 15, 2409–2439 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  13. Erdős, L., Schlein, B., Yau, H.-T.: Derivation of the Gross–Pitaevskii hierarchy for the dynamics of Bose–Einstein condensate. Commun. Pure Appl. Math. 59(12), 1659–1741 (2006)

    Article  MathSciNet  Google Scholar 

  14. Fournais, S., Solovej, J.P.: The energy of dilute Bose gases. Ann. Math. 192(3), 893–976 (2020)

    Article  MathSciNet  Google Scholar 

  15. Grech, P., Seiringer, R.: The excitation spectrum for weakly interacting bosons in a trap. Commun. Math. Phys. 322(2), 559–591 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  16. Hainzl, C.: Another proof of BEC in the GP-limit. J. Math. Phys. 62, 051901 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  17. Lewin, M., Nam, P.T., Serfaty, S., Solovej, J.P.: Bogoliubov spectrum of interacting Bose gases. Commun. Pure Appl. Math. 68(3), 413–471 (2014)

    Article  MathSciNet  Google Scholar 

  18. Lieb, E.H., Seiringer, R.: Proof of Bose–Einstein condensation for dilute trapped gases. Phys. Rev. Lett. 88, 170409 (2002)

    Article  ADS  Google Scholar 

  19. Lieb, E.H., Seiringer, R.: Derivation of the Gross–Pitaevskii equation for rotating Bose gases. Commun. Math. Phys. 264(2), 505–537 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  20. Lieb, E.H., Seiringer, R., Yngvason, J.: Bosons in a trap: a rigorous derivation of the Gross–Pitaevskii energy functional. Phys. Rev. A 61, 043602 (2000)

    Article  ADS  Google Scholar 

  21. Nam, P.T., Napiórkowski, M., Ricaud, J., Triay, A.: Optimal rate of condensation for trapped bosons in the Gross–Pitaevskii regime. Preprint arXiv:2001.04364

  22. Nam, P.T., Rougerie, N., Seiringer, R.: Ground states of large bosonic systems: the Gross–Pitaevskii limit revisited. Anal. PDE 9(2), 459–485 (2016)

    Article  MathSciNet  Google Scholar 

  23. Nam, P.T., Triay, A.: Bogoliubov excitation spectrum of trapped Bose gases in the Gross–Pitaevskii regime. Preprint arXiv:2106.11949

  24. Pizzo, A.: Bose particles in a box III. A convergent expansion of the ground state of the Hamiltonian in the mean field limiting regime. Preprint arxiv:1511.07026

  25. Seiringer, R.: The excitation spectrum for weakly interacting bosons. Commun. Math. Phys. 306, 565–578 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  26. Yau, H.-T., Yin, J.: The second order upper bound for the ground state energy of a Bose gas. J. Stat. Phys. 136(3), 453–503 (2009)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

BS acknowledges financial support from the NCCR SwissMAP and from the ERC through the ERC-AdG CLaQS (grant agreement No. 834782). BS and SS also acknowledge financial support from the Swiss National Science Foundation (Grant No. 172623) through the Grant “Dynamical and energetic properties of Bose–Einstein condensates.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Severin Schraven.

Additional information

Communicated by Vieri Mastropietro.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Properties of the Gross–Pitaevskii Functional

Properties of the Gross–Pitaevskii Functional

In this appendix, we collect several well-known results about the Gross–Pitaevskii functional \({\mathcal {E}}_\mathrm{GP}\), defined in equation (1.4). Let us recall that \({\mathcal {E}}_\mathrm{GP}:{\mathcal {D}}_\mathrm{GP}\rightarrow {\mathbb {R}}\) is given by

$$\begin{aligned} {\mathcal {E}}_\mathrm{GP}(\varphi ) = \int _{{\mathbb {R}}^3} \left( \vert \nabla \varphi _0 (x) \vert ^2 + V_\text {ext}(x) \vert \varphi _0 (x)\vert ^2 + 4\pi \mathfrak {a}_0 \vert \varphi _0 (x)\vert ^4 \right) \hbox {d}x \end{aligned}$$

with domain

$$\begin{aligned} {\mathcal {D}}_\mathrm{GP} =\big \{ \varphi \in H^1({\mathbb {R}}^3)\cap L^4({\mathbb {R}}^3): \ V_\text {ext}\vert \varphi \vert ^2\in L^1({\mathbb {R}}^3)\big \}. \end{aligned}$$

Recall, moreover, assumption (2) in Eq. (1.7) on the external potential \(V_\text {ext}\). The following was proved in [20, Theorems 2.1, 2.5 & Lemma A.6].

Lemma A.1

There exists a minimizer \(\varphi _0 \in {\mathcal {D}}_\mathrm{GP}\) with \( \Vert \varphi _0 \Vert _2=1\) such that

$$\begin{aligned} \inf _{\psi \in {\mathcal {D}}_\mathrm{GP} \ : \Vert \psi \Vert _2 =1} {\mathcal {E}}_\mathrm{GP}(\psi ) = {\mathcal {E}}_\mathrm{GP}(\varphi _0 ). \end{aligned}$$

The minimizer \(\varphi _0 \) is unique up to a complex phase, which can be chosen so that \(\varphi _0 \) is strictly positive. Furthermore, the minimizer \(\varphi _0 \) solves the Gross–Pitaevskii equation

$$\begin{aligned} -\Delta \varphi _0 + V_\text {ext} \varphi _0 + 8\pi \mathfrak {a}_0 \vert \varphi _0 \vert ^2 \varphi _0 = \varepsilon _\mathrm{GP}\varphi _0 , \end{aligned}$$

with \(\mu \) given by

$$\begin{aligned} \varepsilon _\mathrm{GP}= {\mathcal {E}}_\mathrm{GP}(\varphi _0 ) + 4\pi \mathfrak {a}_0 \Vert \varphi _0 \Vert _4^4. \end{aligned}$$

Moreover, \(\varphi _0 \in L^\infty ({\mathbb {R}}^3)\cap C^1({\mathbb {R}}^3)\) and for every \(\nu >0\) there exists \(C_\nu \) (which only depends on \(\nu \) and \({\mathfrak {a}}_0\)) such that for all \(x\in {\mathbb {R}}^3\) it holds true that

$$\begin{aligned} \vert \varphi _0 (x)\vert \le C_\nu e^{-\nu \vert x \vert }. \end{aligned}$$
(A.1)

As in the main text, \( \varphi _0 \) denotes the unique, strictly positive minimizer of \({\mathcal {E}}_\mathrm{GP}\), subject to the constraint \( \Vert \varphi _0 \Vert _2=1\). In addition to Lemma A.1, we collect some additional facts about the regularity of \(\varphi _0 \). The following was shown in [11, Theorem A.2].

Lemma A.2

Let \( V_\text {ext}\) satisfy the assumptions in (1.7). Then \(\varphi _0 \in H^2({\mathbb {R}}^3)\cap C^2({\mathbb {R}}^3)\) and for every \(\nu >0\) there exists \(C_\nu >0\) such that for every \(x\in {\mathbb {R}}^3\) we have

$$\begin{aligned} \vert \nabla \varphi _0 (x) \vert , \ \vert \Delta \varphi _0 (x) \vert , | \nabla \Delta \varphi _0 (x)| \le C_\nu e^{-\nu \vert x \vert }. \end{aligned}$$
(A.2)

Furthermore, if \( {\widehat{\varphi }}_0 \) denotes the Fourier transform of \(\varphi _0 \), we have for all \( p\in {\mathbb {R}}^3\) that

$$\begin{aligned} | {\widehat{\varphi }}_0 (p)|, | \widehat{\varphi _0 ^2} (p)| \le \frac{C}{(1+ | p|)^3}. \end{aligned}$$
(A.3)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brennecke, C., Schlein, B. & Schraven, S. Bogoliubov Theory for Trapped Bosons in the Gross–Pitaevskii Regime. Ann. Henri Poincaré 23, 1583–1658 (2022). https://doi.org/10.1007/s00023-021-01151-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-021-01151-z

Navigation