Skip to main content
Log in

Path Integral Quantization of Volume

  • Original Paper
  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

A hyperlink is a finite set of non-intersecting simple closed curves in \(\mathbb {R} \times \mathbb {R}^3\). Let R be a compact set inside \(\mathbb {R}^3\). The dynamical variables in General Relativity are the vierbein e and a \(\mathfrak {su}(2)\times \mathfrak {su}(2)\)-valued connection \(\omega \). Together with Minkowski metric, e will define a metric g on the manifold. Denote \(V_R(e)\) as the volume of R, for a given choice of e. The Einstein–Hilbert action \(S(e,\omega )\) is defined on e and \(\omega \). We will quantize the volume of R by integrating \(V_R(e)\) against a holonomy operator of a hyperlink L, disjoint from R, and the exponential of the Einstein–Hilbert action, over the space of vierbein e and \(\mathfrak {su}(2)\times \mathfrak {su}(2)\)-valued connection \(\omega \). Using our earlier work done on Chern–Simons path integrals in \(\mathbb {R}^3\), we will write this infinite-dimensional path integral as the limit of a sequence of Chern–Simons integrals. Our main result shows that the volume operator can be computed by counting the number of nodes on the projected hyperlink in \(\mathbb {R}^3\), which lie inside the interior of R. By assigning an irreducible representation of \(\mathfrak {su}(2)\times \mathfrak {su}(2)\) to each component of L, the volume operator gives the total kinetic energy, which comes from translational and angular momentum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baez, J.C.: An Introduction to spin foam models of quantum gravity and BF theory. Lect. Notes Phys. 543, 25–94 (2000)

    Article  ADS  Google Scholar 

  2. Baez, J.: Spin networks, spin foams and quantum gravity (1999)

  3. Baez, J.C.: Spin networks in gauge theory. Adv. Math. 117(2), 253–272 (1996)

    Article  MathSciNet  Google Scholar 

  4. Rovelli, C., Smolin, L.: Spin networks and quantum gravity. Phys. Rev. D 52, 5743–5759 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  5. Rovelli, C., Smolin, L.: Discreteness of area and volume in quantum gravity. Nucl. Phys. B 442(3), 593–619 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  6. Lim, A.P.C.: Einstein–Hilbert path integrals in \(\mathbb{R}^4\). ArXiv e-prints (2017)

  7. Rovelli, C., Smolin, L.: Knot theory and quantum gravity. Phys. Rev. Lett. 61, 1155–1158 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  8. Lim, A.P.C.: Invariants in quantum geometry. ArXiv e-prints (2017)

  9. Lim, A.P.C.: Area operator in loop quantum gravity. In: Annales Henri Poincaré, vol. 18, no. 11

  10. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: an analytical and numerical investigation. Phys. Rev. D 73, 124038 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  11. Lim, A.P.C.: Non-abelian gauge theory for Chern–Simons path integral on \({R}^3\). J. Knot Theory Ramif. 21(4), 1250039 (2012)

    Article  MathSciNet  Google Scholar 

  12. Witten, E.: Quantum field theory and the Jones polynomial. Commun. Math. Phys. 121(3), 351–399 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  13. Kassel, C.: Quantum Groups, Vol. 155 of Graduate Texts in Mathematics. Springer, New York (1995)

    Google Scholar 

  14. Mercuri, S.: Introduction to loop quantum gravity. PoS ISFTG, 016 (2009)

    Google Scholar 

  15. Rovelli, C.: Quantum Gravity, Cambridge Monographs on Mathematical Physics. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  16. Thiemann, T.: Lectures on loop quantum gravity. In: Giulini, D.J.W., Kiefer, C., Lãmmerzahl, C. (eds.) Quantum Gravity. Lecture Notes in Physics, vol. 631, pp. 41–135. Springer, Berlin, Heidelberg (2003)

    Chapter  Google Scholar 

  17. Lim, A.P.C.: Chern–Simons path integrals in \({S}^2 \times {S}^1\). Mathematics 3, 843–879 (2015)

    Article  Google Scholar 

  18. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21(15), R53 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  19. Rovelli, C.: Loop quantum gravity. Living Rev. Relativ. 1(1), 75 (1998)

    Article  MathSciNet  Google Scholar 

  20. Thiemann, T.: Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2008)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adrian P. C. Lim.

Additional information

Communicated by Carlo Rovelli.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lim, A.P.C. Path Integral Quantization of Volume. Ann. Henri Poincaré 21, 1311–1327 (2020). https://doi.org/10.1007/s00023-019-00882-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-019-00882-4

Keywords

Mathematics Subject Classification

Navigation