Skip to main content
Log in

Landauer’s Principle for Trajectories of Repeated Interaction Systems

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We analyse Landauer’s principle for repeated interaction systems consisting of a reference quantum system \(\mathcal {S}\) in contact with an environment \(\mathcal {E}\) which is a chain of independent quantum probes. The system \(\mathcal {S}\) interacts with each probe sequentially, for a given duration, and Landauer’s principle relates the energy variation of \(\mathcal {E}\) and the decrease of entropy of \(\mathcal {S}\) by the entropy production of the dynamical process. We consider refinements of the Landauer bound at the level of the full statistics (FS) associated with a two-time measurement protocol of, essentially, the energy of \(\mathcal {E}\). The emphasis is put on the adiabatic regime where the environment, consisting of \(T \gg 1\) probes, displays variations of order \(T^{-1}\) between the successive probes, and the measurements take place initially and after T interactions. We prove a large deviation principle and a central limit theorem as \(T \rightarrow \infty \) for the classical random variable describing the entropy production of the process, with respect to the FS measure. In a special case, related to a detailed balance condition, we obtain an explicit limiting distribution of this random variable without rescaling. At the technical level, we obtain a non-unitary adiabatic theorem generalizing that of Hanson et al. (Commun Math Phys 349(1):285–327, 2017) and analyse the spectrum of complex deformations of families of irreducible completely positive trace-preserving maps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Bergmann, P.G., Lebowitz, J.L.: Time symmetry in the quantum process of measurement. Phys. Rev. 2(134), B1410–B1416 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benoist, T., Jakšić, V., Pautrat, Y., Pillet, C.-A.: On entropy production of repeated quantum measurements II. Examples (2018) (In preparation)

  3. Bickel, P.J., Doksum, K.A.: Mathematical Statistics—Basic Ideas and Selected Topics. Texts in Statistical Science Series, vol. 1, 2nd edn. CRC Press, Boca Raton (2015)

    MATH  Google Scholar 

  4. Benoist, T., Fraas, M., Jakšić, V., Pillet, C.-A.: Full statistics of erasure processes: isothermal adiabatic theory and a statistical Landauer principle. Rev. Roum. Math. Pures Appl. 62, 259–286 (2017)

    MathSciNet  MATH  Google Scholar 

  5. Bhatia, R.: Matrix Analysis, Graduate Texts in Mathematics, vol. 169. Springer, New York (1997)

    Google Scholar 

  6. Billingsley, P.: Probability and Measure. Wiley Series in Probability and Mathematical Statistics, 3rd edn. Wiley, New York (1995)

    MATH  Google Scholar 

  7. Bruneau, L., Joye, A., Merkli, M.: Random repeated interaction quantum systems. Commun. Math. Phys. 284(2), 553–581 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bruneau, L., Joye, A., Merkli, M.: Repeated interactions in open quantum systems. J. Math. Phys. 55(7), 075204 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Benoist, T., Jakšić, V., Pautrat, Y., Pillet, C.-A.: On entropy production of repeated quantum measurements I. General theory. Commun. Math. Phys. 357(1), 77–123 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Bryc, W.: A remark on the connection between the large deviation principle and the central limit theorem. Stat. Probab. Lett. 18(4), 253–256 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cuneo, N., Jakšić, V., Pillet, C.-A., Shirikyan, A.: Fluctuation Theorem and Thermodynamic Formalism. arXiv preprint (2017). arXiv:1712.05167

  12. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley, Hoboken (2006)

    MATH  Google Scholar 

  13. Cubitt, T.: Bi/tripartite partial trace. http://www.dr-qubit.org/matlab.html (2009). Mathematica package. Accessed Apr 2018

  14. Dembo, A., Zeitouni, O.: Large Deviations Techniques and Applications. Stochastic Modelling and Applied Probability. Corrected reprint of the second (1998) edition, vol. 38. Springer, Berlin (2010)

    Book  MATH  Google Scholar 

  15. Evans, D.E., Høegh-Krohn, R.: Spectral properties of positive maps on \(C^*\)-algebras. J. Lond. Math. Soc. (2) 17(2), 345–355 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  16. Esposito, M., Harbola, U., Mukamel, S.: Nonequilibrium fluctuations, fluctuation theorems, and counting statistics in quantum systems. Rev. Mod. Phys. 81, 1665–1702 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ellis, R.S.: Entropy, Large Deviations, and Statistical Mechanics. Grundlehren der mathematischen Wissenschaften, vol. 271. Springer, New York (1985)

    Book  MATH  Google Scholar 

  18. Fagnola, F., Pellicer, R.: Irreducible and periodic positive maps. Commun. Stoch. Anal. 3(3), 407–418 (2009)

    MathSciNet  MATH  Google Scholar 

  19. Guarnieri, G., Campbell, S., Goold, J., Pigeon, S., Vacchini, B., Paternostro, M.: Full counting statistics approach to the quantum non-equilibrium landauer bound. J. Phys. 19(10), 103038 (2017)

    MathSciNet  Google Scholar 

  20. Hanson, E.P., Joye, A., Pautrat, Y., Raquépas, R.: Landauer’s principle in repeated interaction systems. Commun. Math. Phys. 349(1), 285–327 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Hiai, F., Mosonyi, M., Ogawa, T.: Large deviations and Chernoff bound for certain correlated states on a spin chain. J. Math. Phys. 48(12), 123301 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Horowitz, J.M., Parrondo, J.M.R.: Entropy production along nonequilibrium quantum jump trajectories. J. Phys. 15(8), 085028 (2013)

    Google Scholar 

  23. Jakšić, V., Ogata, Y., Pautrat, Y., Pillet, C.-A.: Entropic fluctuations in quantum statistical mechanics. An introduction. In: Frohlich, J., Salmhofer, M., Mastropietro, V., De Roeck, W., Cugliandolo, L.F. (eds.) Quantum Theory from Small to Large Scales. Lecture Notes of the Les Houches Summer School, vol. 95, pp. 213–410. Oxford University Press (2012)

  24. Jakšić, V., Ogata, Y., Pillet, C.-A., Seiringer, R.: Quantum hypothesis testing and non-equilibrium statistical mechanics. Rev. Math. Phys 24(6), 1230002, 67 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Jakšić, V., Pillet, C.-A.: A note on the Landauer principle in quantum statistical mechanics. J. Math. Phys. 55(7), 075210–075210:21 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Jakšić, V., Pillet, C.-A., Westrich, M.: Entropic fluctuations of quantum dynamical semigroups. J. Stat. Phys. 154(1), 153–187 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Kato, T.: Perturbation Theory for Linear Operators, Classics in Mathematics. Springer, New York (1976)

    Google Scholar 

  28. Kurchan, J.: A quantum fluctuation theorem. arXiv preprint (2000). arXiv:cond-mat/0007360

  29. Landauer, R.: Irreversibility and heat generation in the computing process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Meschede, D., Walther, H., Müller, G.: One-atom maser. Phys. Rev. Lett. 54, 551–554 (1985)

    Article  ADS  Google Scholar 

  31. Reeb, D., Wolf, M.M.: An improved Landauer principle with finite-size corrections. J. Phys. 16(10), 103011 (2014)

    Google Scholar 

  32. Tasaki, H.: Jarzynski relations for quantum systems and some applications. arXiv preprint (2000). arXiv:cond-mat/0009244

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alain Joye.

Additional information

Communicated by Claude Alain Pillet.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hanson, E.P., Joye, A., Pautrat, Y. et al. Landauer’s Principle for Trajectories of Repeated Interaction Systems. Ann. Henri Poincaré 19, 1939–1991 (2018). https://doi.org/10.1007/s00023-018-0679-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0679-1

Navigation