Skip to main content
Log in

Toward Entanglement Entropy with UV-Cutoff in Conformal Nets

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We consider the entanglement entropy for a spacetime region and its spacelike complement in the framework of algebraic quantum field theory. For a Möbius covariant local net (a chiral component of a two-dimensional conformal field theory) satisfying either a certain nuclearity property or the split property, we consider the von Neumann entropy for type I factors between local algebras and introduce an entropic quantity. Then we implement a cutoff on this quantity with respect to the conformal Hamiltonian and show that it remains finite as the distance of two intervals tends to zero. We compare our definition to others in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araki, H.: von Neumann algebras of local observables for free scalar field. J. Math. Phys. 5, 1–13 (1964). https://doi.org/10.1063/1.1704063

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Araki, H.: Mathematical Theory of Quantum Fields. International Series of Monographs on Physics, vol. 101. Oxford University Press, New York (1999)

    Google Scholar 

  3. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards Applied Mathematics Series, vol. 55. U.S. Government Printing Office, Washington, DC (1964)

    MATH  Google Scholar 

  4. Buchholz, D., D’Antoni, C., Fredenhagen, K.: The universal structure of local algebras. Commun. Math. Phys. 111(1), 123–135 (1987). http://projecteuclid.org/euclid.cmp/1104159470

  5. Buchholz, D., D’Antoni, C., Longo, R.: Nuclear maps and modular structures. I. General properties. J. Funct. Anal. 88(2), 233–250 (1990). https://doi.org/10.1016/0022-1236(90)90104-S

    Article  MathSciNet  MATH  Google Scholar 

  6. Buchholz, D., D’Antoni, C., Longo, R.: Nuclear maps and modular structures. II. Applications to quantum field theory. Commun. Math. Phys. 129(1), 115–138 (1990). https://projecteuclid.org/euclid.cmp/1104180648

  7. Buchholz, D., D’Antoni, C., Longo, R.: Nuclearity and thermal states in conformal field theory. Commun. Math. Phys. 270(1), 267–293 (2007). arXiv:math-ph/0603083

  8. Brunetti, R., Guido, D., Longo, R.: Modular structure and duality in conformal quantum field theory. Commun. Math. Phys. 156(1), 201–219 (1993). http://projecteuclid.org/euclid.cmp/1104253522

  9. Bombelli, L., Koul, R.K., Lee, J., Sorkin, R.D.: Quantum source of entropy for black holes. Phys. Rev. D 34, 373–383 (1986). https://doi.org/10.1103/PhysRevD.34.373

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Buchholz, D., Porrmann, M.: How small is the phase space in quantum field theory? Ann. Inst. H. Poincaré Phys. Théor. 52(3), 237–257 (1990). http://www.numdam.org/item?id=AIHPA_1990__52_3_237_0

  11. Buchholz, D., Wichmann, E. H.: Causal independence and the energy-level density of states in local quantum field theory. Commun. Math. Phys. 106(2), 321–344 (1986). http://projecteuclid.org/euclid.cmp/1104115703

  12. Calabrese, P., Cardy, J.: Entanglement entropy and quantum field theory. J. Stat. Mech. Theory Exp. 2004(6), PO6002 (electronic) (2004). arXiv:hep-th/0405152

  13. Casini, H., Huerta, M.: Entanglement entropy in free quantum field theory. J. Phys. A 42(50), 504007 (2009). arXiv:0905.2562

  14. Callan, C., Wilczek, F.: On geometric entropy. Phys. Lett. B 333(1–2), 55–61 (1994). arXiv:hep-th/9401072

  15. Carpi, S., Weiner, M.: On the uniqueness of diffeomorphism symmetry in conformal field theory. Commun. Math. Phys. 258(1), 203–221 (2005). arXiv:math/0407190

  16. Doplicher, S., Longo, R.: Standard and split inclusions of von Neumann algebras. Invent. Math. 75(3), 493–536 (1984). https://eudml.org/doc/143108

  17. Fredenhagen, K., Jörß, M.: Conformal Haag-Kastler nets, pointlike localized fields and the existence of operator product expansions. Commun. Math. Phys. 176(3), 541–554 (1996). https://projecteuclid.org/euclid.cmp/1104286114

  18. Fewster, C.J., Ojima, I., Porrmann, M.: \(p\)-nuclearity in a new perspective. Lett. Math. Phys. 73(1), 1–15 (2005). arXiv:math-ph/0412027

  19. Gabbiani, F., Fröhlich, J.: Operator algebras and conformal field theory. Commun. Math. Phys. 155(3), 569–640 (1993). http://projecteuclid.org/euclid.cmp/1104253398

  20. Haag, R.: Local Quantum Physics, 2nd edn. Springer, Berlin (1996)

    Book  MATH  Google Scholar 

  21. Holzhey, C., Larsen, F., Wilczek, F.: Geometric and renormalized entropy in conformal field theory. Nuclear Phys. B 424(3), 443–467 (1994). arXiv:hep-th/9403108

  22. Haag, R., Swieca, J. A.: When does a quantum field theory describe particles? Commun. Math. Phys. 1, 308–320 (1965). https://projecteuclid.org/euclid.cmp/1103758947

  23. Hollands, S., Sanders, K.: Entanglement measures and their properties in quantum field theory ( to appear in Springer Briefs in Mathematical Physics) (2017). arXiv:1702.04924

  24. Jaffee, A. M.: High-energy behavior in quantum field theory. I. Strictly localizable fields. Phys. Rev. 158, 1454–1461 (1967). http://www.slac.stanford.edu/cgi-wrap/getdoc/slac-pub-0249.pdf

  25. Johnson, S. G.: Saddle-point integration of \(C_\infty \) “bump” functions. (August 2015) arXiv:1508.04376

  26. Kawahigashi, Y.: Conformal field theory, tensor categories and operator algebras. J. Phys. A 48(30), 303001 (2015). arXiv:1503.05675

  27. Kac, V.G., Raina, A.K.: Bombay Lectures on Highest Weight Representations of Infinite-Dimensional Lie Algebras. Advanced Series in Mathematical Physics, vol. 2. orld Scientific Publishing Co., Inc., Teaneck (1987)

    MATH  Google Scholar 

  28. Kawahigashi, Y., Longo, R.: Noncommutative spectral invariants and black hole entropy. Commun. Math. Phys. 257(1), 193–225 (2005). arXiv:math-ph/0405037

  29. Morinelli, V., Tanimoto, Y., Weiner, M.: Conformal covariance and split property. Commun. Math. Phys. 357(1), 379–406 (2018). arXiv:1609.02196

  30. Narnhofer, H.: Entropy density for relativistic quantum field theory. Rev. Math. Phys. 06(05a), 1127–1145 (1994). http://www.worldscientific.com/doi/abs/10.1142/S0129055X94000390

  31. Narnhofer, H.: Entanglement, split and nuclearity in quantum field theory. Rep. Math. Phys. 50(1), 111–123 (2002). https://doi.org/10.1016/S0034-4877(02)80048-9

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Otani, Y.: Entanglement entropy in algebraic quantum field theory. Ph.D.Thesis, The University of Tokyo (2017)

  33. Ohya, M., Petz, D.: Quantum Entropy and Its Use. Theoretical and Mathematical Physics. Springer, Berlin (2004)

    MATH  Google Scholar 

  34. Rehren, K.-H.: Algebraic conformal quantum field theory in perspective. In: Advances in Algebraic Quantum Field Theory, Mathematical Physics Studies. Springer, Cham, pp. 331–364 (2015). arXiv:1501.03313

  35. Ryu, S., Takayanagi, T.: Holographic derivation of entanglement entropy from the anti-de Sitter space/conformal field theory correspondence. Phys. Rev. Lett. 96(18), 181602 (2006). arXiv:hep-th/0603001

  36. Srednicki, M.: Entropy and area. Phys. Rev. Lett. 71(5), 666–669 (1993). arXiv:hep-th/9303048

  37. Summers, S.J., Werner, R.: The vacuum violates Bell’s inequalities. Phys. Lett. A 110(5), 257–259 (1985). https://doi.org/10.1016/0375-9601(85)90093-3

    Article  ADS  MathSciNet  Google Scholar 

  38. Summers, S.J., Werner, R.: Maximal violation of Bell’s inequalities is generic in quantum field theory. Commun. Math. Phys. 110(2), 247–259 (1987). http://projecteuclid.org/euclid.cmp/1104159237

  39. Tener, J.: Geometric realization of algebraic conformal field theories (2016). arXiv:1611.01176

  40. Vedral, V., Plenio, M.B.: Entanglement measures and purification procedures. Phys. Rev. A 57, 1619–1633 (1998). arXiv:quant-ph/9707035

  41. Yngvason, J.: Localization and entanglement in relativistic quantum physics. In: Blanchard, P., Fröhlich, J. (eds.) The Message of Quantum Science: Attempts Towards a Synthesis. Springer, Berlin, pp. 325–348 (2015). arXiv:1401.2652

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoh Tanimoto.

Additional information

Communicated by Karl Henning Rehren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Otani, Y., Tanimoto, Y. Toward Entanglement Entropy with UV-Cutoff in Conformal Nets. Ann. Henri Poincaré 19, 1817–1842 (2018). https://doi.org/10.1007/s00023-018-0671-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-018-0671-9

Navigation