Skip to main content
Log in

A Quantitative Version of Hawking Radiation

  • Published:
Annales Henri Poincaré Aims and scope Submit manuscript

Abstract

We present a proof of the existence of the Hawking radiation for massive bosons in the Schwarzschild--de Sitter metric. It provides estimates for the rates of decay of the initial quantum state to the Hawking thermal state. The arguments in the proof include a construction of radiation fields by conformal scattering theory; a semiclassical interpretation of the blueshift effect; the use of a WKB parametrix near the surface of a collapsing star. The proof does not rely on the spherical symmetry of the spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersson L., Blue P.: Hidden symmetries and decay for the wave equation on the Kerr spacetime. Ann. Math. (2) 182(3), 787–853 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bachelot A.: Scattering of scalar fields by spherical gravitational collapse. J. Math. Pures Appl. (9) 76(2), 155–210 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bachelot A.: Quantum vacuum polarization at the black-hole horizon. Ann. Inst. H. Poincaré Phys. Théor. 67(2), 181–222 (1997)

    MathSciNet  MATH  Google Scholar 

  4. Bachelot A.: The Hawking effect. Ann. Inst. H. Poincaré Phys. Théor. 70(1), 41–99 (1999)

    MathSciNet  MATH  Google Scholar 

  5. Bachelot A.: Creation of fermions at the charged black-hole horizon. Ann. Henri Poincaré 1(6), 1043–1095 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bony J.-F., Häfner D.: Decay and non-decay of the local energy for the wave equation on the de Sitter–Schwarzschild metric. Commun. Math. Phys. 282(3), 697–719 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Bouvier P., Gérard C.: Hawking effect for a toy model of interacting fermions. Ann. Henri Poincaré 16(5), 1191–1230 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Bratteli, O., Robinson, D.W.: Operator algebras and quantum-statistical mechanics, I and II. Texts and Monographs in Physics (1981)

  9. Dafermos, M., Rodnianski, I.: The wave equation on Schwarzschild–de Sitter space times. arXiv:0709.2766

  10. Dafermos M., Rodnianski I.: A proof of the uniform boundedness of solutions to the wave equation on slowly rotating Kerr backgrounds. Invent. Math. 185(3), 467–559 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Dafermos, M., Rodnianski, I., Shlapentokh-Rothman, Y.: Decay for solutions of the wave equation on Kerr exterior spacetimes III: the full subextremal case |a| <  M. arXiv:1402.7034

  12. Dyatlov S.: Quasi-normal modes and exponential energy decay for the Kerr–de Sitter black hole. Commun. Math. Phys. 306(1), 119–163 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Dyatlov S.: Exponential energy decay for Kerr–de Sitter black holes beyond event horizons. Math. Res. Lett. 18(5), 1023–1035 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Dyatlov S.: Asymptotic distribution of quasi-normal modes for Kerr–de Sitter black holes. Ann. Henri Poincaré 13(5), 1066–1101 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Dyatlov S.: Asymptotics of linear waves and resonances with applications to black holes. Commun. Math. Phys. 335, 1445–1485 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Finster, F., Kamran, N., Smoller, J., Yau, S.-T.: Decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 264, 465–503 (2006)

  17. Finster F., Kamran N., Smoller J., Yau S.-T.: Erratum: decay of solutions of the wave equation in the Kerr geometry. Commun. Math. Phys. 280, 563–573 (2008)

    Article  ADS  MATH  Google Scholar 

  18. Fredenhagen K., Haag R.: On the derivation of Hawking radiation associated with the formation of a black hole. Commun. Math. Phys. 127(2), 273–284 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Friedlander F.G.: Radiation Fields and hyperbolic scattering theory. Math. Proc. Cambr. Philos. Soc. 88, 483–515 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  20. Gannot O.: Quasinormal modes for Schwarzschild–AdS black holes: exponential convergence to the real axis. Commun. Math. Phys. 330(2), 771–799 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Gannot, O.: A global definition of quasinormal modes for Kerr–AdS black holes. arXiv:1407.6686

  22. Gibbons G.W., Hawking S.W.: Cosmological event horizons, thermodynamics, and particle creation. Phys. Rev. D 15, 2738 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  23. Häfner D.: Creation of fermions by rotating charged black holes. Mém. Soc. Math. Fr. (N.S.) 117, 158 (2009)

    MathSciNet  MATH  Google Scholar 

  24. Hawking S.W.: Particle creation by black holes. Commun. Math. Phys. 43(3), 199–220 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  25. Hörmander, L.: The analysis of linear partial differential operators III. Class. Math. (2007)

  26. Melnyk F.: The Hawking effect for spin 1/2 fields. Commun. Math. Phys. 244(3), 483–525 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Melnyk F.: The Hawking effect for a collapsing star in an initial state of KMS type. J. Phys. A. 37(39), 9225–9249 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Melrose R., Sá Barreto A., Vasy A.: Asymptotics of solutions of the wave equation on de Sitter–Schwarzschild space. Commun. Partial Differ. Equ. 39(3), 512–529 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nicolas, J.-P.: Conformal scattering on the Schwarzschild metric. arXiv:1312.1386

  30. Sá Barreto A., Zworski M.: Distribution of resonances for spherical black holes. Math. Res. Lett. 4(1), 103–121 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Simon B.: Resonances in one dimension and Fredholm determinants. J. Funct. Anal. 178(2), 396–420 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  32. Tataru, D., Tohaneanu, M.: A local energy estimate on Kerr black hole backgrounds. Int. Math. Res. Not. IMRN 2011(2), 248–292

  33. Vasy A.: Microlocal analysis of asymptotically hyperbolic and Kerr–de Sitter spaces (with an appendix by Semyon Dyatlov). Invent. Math. 194(2), 381–513 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Zworski, M.: Semiclassical analysis. In: Graduate Studies in Mathematics, vol. 138. American Mathematical Society, Providence (2012)

  35. Zworski, M.: Resonances for asymptotically hyperbolic manifolds: Vasy’s method revisited. J. Spectral Theory. (To appear)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexis Drouot.

Additional information

Communicated by Karl-Henning Rehren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drouot, A. A Quantitative Version of Hawking Radiation. Ann. Henri Poincaré 18, 757–806 (2017). https://doi.org/10.1007/s00023-016-0509-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00023-016-0509-2

Navigation