Skip to main content
Log in

\({\mathcal {C}}_\alpha -\)ruled surfaces respect to direction curve in fractional differential geometry

  • Published:
Journal of Geometry Aims and scope Submit manuscript

Abstract

Conformable fractional calculus is a relatively new branch of mathematics that seeks to extend traditional calculus to include non-integer order derivatives and integrals. This new form of calculus allows for a more precise description of physical phenomena, such as those related to fractal geometry and chaos theory. It also offers new tools for solving problems in physics, engineering, finance, and other areas. By using conformable fractional calculus, researchers can gain insight into the behavior of systems that would otherwise be difficult or impossible to analyze. In this article, we will discuss the fundamentals of conformable fractional calculus and its applications in various fields. For this purpose ruled surfaces are studied with conformable fractional calculus. The ruled surface is rearranged concerning the conformable surface definition and geometric properties are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availibility

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Acay, B., Bas, E., Abdeljawad, T.: Fractional economic models based on market equilibrium in the frame of different type kernels. Chaos Solitons Fractals 130, 109438 (2020)

    Article  MathSciNet  Google Scholar 

  2. Akgül, A., Khoshnawb, S.H.A.: Application of fractional derivative on non-linear biochemical reaction models. Int. J. Intell. Netw. 1, 52–58 (2020)

    Google Scholar 

  3. Al-Jamel, A., Al-Masaeed, M., Rabei, E., Baleanu, D.: The effect of deformation of special relativity by conformable derivative. Rev. Mex. Fís. 68(5), 050705 (2022)

    MathSciNet  Google Scholar 

  4. Arfaoui, H., Makhlouf, A.B.: Stability of a fractional advection-diffusion system with conformable derivative. Chaos, Solitons Fractals 164, 112649 (2022)

    Article  MathSciNet  Google Scholar 

  5. Aydin, M.E., Mihai, A., Yokus, A.: Applications of fractional calculus in Equiaffine geometry: plane curves with fractional order. Math. Methods Appl. Sci. 44(17), 13659–13669 (2021)

    Article  MathSciNet  Google Scholar 

  6. Aydin, M.E., Bektas, M., Ogrenmis, A.O., Yokus, A.: Differential geometry of curves in Euclidean 3-space with fractional order. Int. Electron. J. Geom. 14(1), 132–144 (2021)

    MathSciNet  Google Scholar 

  7. Aydin, M.E., Kaya, S.: Fractional Equiaffine curvatures of curves in 3-dimensional affine space. Int. J. Maps Math. 6(1), 67–82 (2023)

    MathSciNet  Google Scholar 

  8. Aydin, M.E.: Effect of local fractional derivatives on Riemann curvature tensor (2023). https://doi.org/10.48550/arXiv.2211.13538

  9. Bonyah, E., Hammouch, Z., Koksal, M.E.: Mathematical modeling of coronavirus dynamics with conformable derivative in Liouville–Caputo Sense. J. Math. 2022, 8353343 (2022)

    Article  MathSciNet  Google Scholar 

  10. Caputo, M.: Linear models of dissipation in anelastic solids. La Rivista del Nuovo Cimento 1(2), 161–198 (1971)

    Article  Google Scholar 

  11. Carmo, M.P.: Differential Geometry of Curves and Surfaces. Prentice-Hall, Inc., Englewood Cliffs, New Jersey (1976)

    Google Scholar 

  12. Chen, W., Sun, H., Li, X.: Fractional Derivative Modeling in Mechanics and Engineering. Springer, Singapore (2022)

    Book  Google Scholar 

  13. Divjak, B., Milin-Sipus, Z.: Special curves on the ruled surfaces in Galilean and Pseudo-Galilean spaces. Acta Math. Hungar. 98(3), 203–215 (2003)

    Article  MathSciNet  Google Scholar 

  14. Ergut, M.: On Generalized Ruled Surfaces. Ph.D. Thesis, Firat University, Elazıg (1983)

  15. Foyjonnesa, Shahen N.H.M..., Rahman, M.M., Alshomrani, A.S., Inc, M.: On fractional order computational solutions of low-pass electrical transmission line model with the sense of conformable derivative. Alex. Eng. J. 81, 87–100 (2023)

    Article  Google Scholar 

  16. Gozutok, U., Coban, H.A., Sagiroglu, Y.: Frenet frame with respect to conformable derivative. Filomat 33(6), 1541–1550 (2019)

    Article  MathSciNet  Google Scholar 

  17. Gozutok, N.Y., Gozutok, U.: Multivariable conformable fractional calculus. Filomat 32(2), 45–53 (2018)

    Article  MathSciNet  Google Scholar 

  18. Guggenheimer, H.N.: Differential Geometry. College of Liberal Arts University of Minnesota, Minnesota (1963)

    Google Scholar 

  19. Has, A., Yılmaz, B.: Special fractional curve pairs with fractional calculus. Int. Electron. J. Geom. 15(1), 132–144 (2022)

    Article  MathSciNet  Google Scholar 

  20. Has, A., Yılmaz, B., Akkurt, A., Yildirim, H.: Conformable special curves in Euclidean 3-space. Filomat 36(14), 4687–4698 (2022)

    Article  MathSciNet  Google Scholar 

  21. Has, A., Yılmaz, B.: Effect of fractional analysis on magnetic curves. Rev. Mex. Fis. 68(4), 1–15 (2022)

    MathSciNet  Google Scholar 

  22. Has, A., Yılmaz, B.: Fractional measurements and calculations on conformable surfaces, Preprint.

  23. Kamenarovic, I.: Existence theorems for ruled surfaces in the Galilean Space\(G_{3}\). Rad HAZU. Mat. 456(10), 183–196 (1991)

  24. Katugampola, U.N.: A new fractional derivative with classical properties. https://doi.org/10.48550/arXiv.1410.6535 (2014)

  25. Khalil, R., Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  Google Scholar 

  26. Lazopoulos, K.A., Lazopoulos, A.K.: Fractional differential geometry of curves and surfaces. Progr. Fract. Differ. Appl. 2(3), 169–186 (2016)

    Article  Google Scholar 

  27. Magin, R.L.: Fractional calculus in bioengineering. Crit. Rev. Biomed. Eng. 32(1), 1–104 (2004)

    Article  Google Scholar 

  28. Martínez, L., Rosales, J.J., Carreño, C.A., Lozano, J.M.: Electrical circuits described by fractional conformable derivative. Int. J. Circuit Theory Appl. 46(5), 1091–1100 (2018)

    Article  Google Scholar 

  29. Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)

    Google Scholar 

  30. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Pres, New York (1974)

    Google Scholar 

  31. Onder, M., Kahraman, T.: On rectifying ruled surfaces. Kuwait J. Sci. 47(4), 1–11 (2020)

    MathSciNet  Google Scholar 

  32. Pawar, D.D., Raut, D.K., Patil, W.D.: An approach to Riemannian geometry within conformable fractional derivative. Prespacetime J. 9(9), 989–1003 (2018)

    Google Scholar 

  33. Podlubny, I.: Fractional Differential Equations. Academic Pres, New York (1999)

    Google Scholar 

  34. Sipus, Z.M.: Ruled Weingarten surfaces in the Galilean space. Period. Math. Hunger. 45(2), 213–225 (2008)

    Article  MathSciNet  Google Scholar 

  35. Sousa, J.V.C., de Oliveira, E.C.: Mittag–Leffler functions and the truncated V-fractional derivative. Mediterr. J. Math. 14(6), 244 (2017)

    Article  MathSciNet  Google Scholar 

  36. Sousa, J.V.C., de Oliveira, E.C.: On the local M-derivative. Progr. Fract. Differ. Appl. 4(4), 479–492 (2018)

    Google Scholar 

  37. Syouri, S.T.R., Sulaiman, I.M., Mamat, M., Abas, S.S., Ahmad, M.Z.: Conformable fractional derivative and its application to partial fractional derivatives. J. Math. Comput. Sci. 11, 3027–3036 (2021)

    Google Scholar 

  38. Uchaikin, V.V.: Fractional Derivatives for Physicists and Engineers. Springer, Berlin (2013)

    Book  Google Scholar 

  39. Yajima, T., Yamasaki, K.: Geometry of surfaces with Caputo fractional derivatives and applications to incompressible two-dimensional flows. J. Phys. A Math. Theor. 45, 065201 (2012)

    Article  MathSciNet  Google Scholar 

  40. Yajima, T., Oiwa, S., Yamasaki, K.: Geometry of curves with fractional-order tangent vector and Frenet–Serret formulas. Fract. Calc. Appl. Anal. 21(6), 1493–1505 (2018)

    Article  MathSciNet  Google Scholar 

  41. Yılmaz, B., Ramis, C., Yaylı, Y.: On developable ruled surface of the principal-direction curve. Konuralp J. Math. 5(2), 172–178 (2017)

    MathSciNet  Google Scholar 

  42. Yılmaz, B., Has, A.: Obtaining fractional electromagnetic curves in optical fiber using fractional alternative moving frame. Optik Int. J. Light Electron Opt. 260(8), 169067 (2022)

    Article  Google Scholar 

  43. Yılmaz, B.: A new type electromagnetic curves in optical fiber and rotation of the polarization plane using fractional calculus. Optik Int. J. Light Electron Opt. 247(30), 168026 (2021)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editor and the referees for their contributions.

Funding

The authors declare that no funds, grants, or other support were received during the preparation of this manuscrip.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aykut Has.

Ethics declarations

Conflict of interest

No potential confict of interest was reported by the author(s).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Has, A., Yılmaz, B. & Ayvacı, K.H. \({\mathcal {C}}_\alpha -\)ruled surfaces respect to direction curve in fractional differential geometry. J. Geom. 115, 11 (2024). https://doi.org/10.1007/s00022-023-00710-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00022-023-00710-5

Keywords

Mathematics Subject Classification

Navigation