Skip to main content
Log in

Divergence Free Polar Wavelets for the Analysis and Representation of Fluid Flows

  • Published:
Journal of Mathematical Fluid Mechanics Aims and scope Submit manuscript

Abstract

We present a Parseval tight wavelet frame for the representation and analysis of velocity vector fields of incompressible fluids. Our wavelets have closed form expressions in the frequency and spatial domains, are divergence free in the ideal, analytic sense, have a multi-resolution structure and fast transforms, and an intuitive correspondence to common flow phenomena. Our construction also allows for well defined directional selectivity, e.g. to model the behavior of divergence free vector fields in the vicinity of boundaries or to represent highly directional features like in a von Kármán vortex street. We demonstrate the practicality and efficiency of our construction by analyzing the representation of different divergence free vector fields in our wavelets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abry, P., Flandrin, P.: On the initialization of the discrete wavelet transform algorithm. IEEE Signal Process. Lett. 1(2), 32–34 (1994)

    Article  ADS  Google Scholar 

  2. Battle, G., Federbush, P.: Divergence-free vector wavelets. Mich. Math. J. 40(1), 181–195 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  3. Battle, G., Federbush, P., Uhlig, P.: Wavelets for quantum gravity and divergence-free wavelets. Appl. Comput. Harmon. Anal. 1(3), 295–297 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bostan, E., Unser, M., Ward, J.P.: Divergence-free wavelet frames. IEEE Signal Process. Lett. 22(8), 1142–1146 (2015)

    Article  ADS  Google Scholar 

  5. Candès, E., Donoho, D.L.: New tight frames of curvelets and optimal representations of objects with piecewise \(\text{ C }^2\) singularities. Commun. Pure Appl. Math. 57(2), 219–266 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  6. Candès, E.J., Donoho, D.L.: Ridgelets: a key to higher-dimensional intermittency? R. Soc. Lond. Philos. Trans. Ser. A 357, 2495 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Candès, E.J., Donoho, D.L.: Continuous curvelet transform: I. Resolution of the wavefront set. Appl. Comput. Harmon. Anal. 19(2), 162–197 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chenouard, N., Unser, M.: 3D steerable wavelets in practice. IEEE Trans. Image Process. 21(11), 4522–4533 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  10. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    Article  ADS  Google Scholar 

  11. Federbush, P.: A phase cell approach to Yang–Mills theory. I. Modes, lattice-continuum duality. Commun. Math. Phys. 107(2), 319–329 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  12. Federbush, P.: A phase cell approach to Yang–Mills theory. III. Local stability, modified renormalization group transformation. Commun. Math. Phys. 110(2), 293–309 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  13. Federbush, P.: A phase cell approach to Yang–Mills theory. IV. The choice of variables. Commun. Math. Phys. 114(2), 317–343 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  14. Freeman, D., Poore, D., Wei, A.R., Wyse, M.: Moving Parseval frames for vector bundles. Houst. J. Math. 40(3), 817–832 (2014)

    MathSciNet  MATH  Google Scholar 

  15. Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)

    Article  Google Scholar 

  16. Hörmander, L.: The Analysis of Linear Partial Differential Operators. Springer, Berlin (2004)

    MATH  Google Scholar 

  17. Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part I). IEEE Signal Process. Mag. 24(4), 86–104 (2007)

    Article  ADS  Google Scholar 

  18. Kovacevic, J., Chebira, A.: Life beyond bases: the advent of frames (part II). IEEE Signal Process. Mag. 24(5), 115–125 (2007)

    Article  ADS  Google Scholar 

  19. Labate, D., Lim, W.-Q., Kutyniok, G., Weiss, G.: Sparse multidimensional representation using shearlets. In: Papadakis, M., Laine, A.F., Unser, M.A. (eds.) Wavelets XI, pp. 254–262. International Society for Optics and Photonics, Aug 2005

  20. Lemarie-Rieusset, P.-G.: Wavelets, splines and divergence-free vector functions. In: Singh, S.P. (ed.) Approximation Theory, Spline Functions and Applications, pp. 381–390. Springer, Dordrecht (1992)

    Chapter  MATH  Google Scholar 

  21. Lessig, C.: Polar wavelets in space. IEEE Signal Process. Lett. (submitted) (2018). https://arxiv.org/abs/1805.02061

  22. Mallat, S.G.: A Wavelet Tour of Signal Processing: The Sparse Way, 3rd edn. Academic Press, London (2009)

    MATH  Google Scholar 

  23. McEwen, J.D., Durastanti, C., Wiaux, Y.: Localisation of directional scale-discretised wavelets on the sphere. Appl. Comput. Harmon. Anal. 44, 59–88 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  24. Perona, P.: Deformable kernels for early vision. In: Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 222–227. IEEE Computer Society Press (1991)

  25. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–70 (2000)

    Article  MATH  Google Scholar 

  26. Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multi-scale derivative computation. In: Proceedings, International Conference on Image Processing, vol. 3, pp. 444–447. IEEE Computer Society Press (1995)

  27. Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton Mathematical Series. Princeton University Press, Princeton (1993)

    Google Scholar 

  28. Suter, D.: Divergence-free wavelets made easy. Technical report, Monash University, Clayton, Australia (1994)

  29. Unser, M., Chenouard, N.: A unifying parametric framework for 2D steerable wavelet transforms. SIAM J. Imaging Sci. 6(1), 102–135 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Urban, K.: On divergence-free wavelets. Adv. Comput. Math. 4(1), 51–81 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  31. Walter, G.G., Cai, L.: Periodic wavelets from scratch. J. Comput. Anal. Appl. 1(1), 25–41 (1999)

    MathSciNet  Google Scholar 

  32. Ward, J.P., Unser, M.: Harmonic singular integrals and steerable wavelets in L2(Rd). Appl. Comput. Harmon. Anal. 36(2), 183–197 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1922)

    MATH  Google Scholar 

  34. Zhang, X.-P., Tian, L.-S., Peng, Y.-N.: From the wavelet series to the discrete wavelet transform—the initialization. IEEE Trans. Signal Process. 44(1), 129–133 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The author thanks Eugene Fiume for continuing support. Michal Jarzabek and Philipp Herholz helped with implementing the construction.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Lessig.

Ethics declarations

Conflict of interest

The author declares that he have no conflict of interest.

Additional information

Communicated by T. Richter

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lessig, C. Divergence Free Polar Wavelets for the Analysis and Representation of Fluid Flows. J. Math. Fluid Mech. 21, 18 (2019). https://doi.org/10.1007/s00021-019-0408-7

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00021-019-0408-7

Keywords

Mathematics Subject Classification

Navigation