Skip to main content
Log in

Two Weight Bump Conditions for Matrix Weights

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

In this paper we extend the theory of two weight, \(A_p\) bump conditions to the setting of matrix weights. We prove two matrix weight inequalities for fractional maximal operators, fractional and singular integrals, sparse operators and averaging operators. As applications we prove quantitative, one weight estimates, in terms of the matrix \(A_p\) constant, for singular integrals, and prove a Poincaré inequality related to those that appear in the study of degenerate elliptic PDEs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berezhnoĭ, E.I.: Two-weighted estimations for the Hardy–Littlewood maximal function in ideal Banach spaces. Proc. Am. Math. Soc. 127(1), 79–87 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bickel, K., Petermichl, S., Wick, B.: Bounds for the Hilbert transform with matrix \(A_2\) weights. J. Funct. Anal. 270(5), 1719–1743 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bickel, K., Wick, B.: A study of the matrix Carleson embedding theorem with applications to sparse operators. J. Math. Anal. Appl. 435(1), 229–243 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  4. Christ, M., Goldberg, M.: Vector \(\text{ A }_{2}\) weights and a Hardy–Littlewood maximal function. Trans. Am. Math. Soc. 353(3), 1995–2002 (2001)

    Article  MATH  Google Scholar 

  5. Cruz-Uribe, D.: Two weight inequalities for fractional integral operators and commutators. VI International Course of Mathematical Analysis in Andalusia, pp. 25–85 (2016)

  6. Cruz-Uribe, D., Martell, J.M., Pérez, C.: Weights, Extrapolation and the Theory of Rubio de Francia, Operator Theory: Advances and Applications, vol. 215. Birkhäuser/Springer Basel AG, Basel (2011)

    MATH  Google Scholar 

  7. Cruz-Uribe, D., Moen, K.: A fractional Muckenhoupt–Wheeden theorem and its consequences. Integral Equ. Oper. Theory 76(3), 421–446 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cruz-Uribe, D., Pérez, C.: On the two-weight problem for singular integral operators. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 1(4), 821–849 (2002)

    MathSciNet  MATH  Google Scholar 

  9. Cruz-Uribe, D., Rodney, S., Rosta, E.: Poincaré inequalities and Neumann problems for the \(p\)-Laplacian, Canad. Math. Bull. To appear (2017). arXiv:1708.03932v1

  10. Cruz-Uribe, D., Moen, K., Rodney, S.: Matrix \(\cal{A}_{p}\) weights, degenerate Sobolev spaces, and mappings of finite distortion. J. Geom. Anal. 26(4), 2797–2830 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Culiuc, A., di Plinio, F., Ou, Y.: Uniform sparse domination of singular integrals via dyadic shifts. Math. Res. Lett. To appear (2016). arXiv:1610.01958v2

  12. Duoandikoetxea, J.: Fourier Analysis, Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)

    Google Scholar 

  13. Duoandikoetxea, J., Martín-Reyes, F.J., Ombrosi, S.: On the \(A_\infty \) conditions for general bases. Math. Z. 282(3–4), 955–972 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gilbarg, D., Trudinger, N.S.: Elliptic partial differential equations of second order, Classics in Mathematics, Springer-Verlag, Berlin, (2001), Reprint of the 1998 edition

  15. Goldberg, M.: Matrix \(\text{ A }_{p}\) weights via maximal functions. Pac. J. Math. 211(2), 201–220 (2003)

    Article  Google Scholar 

  16. Grafakos, L.: Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 2nd edn. Springer, New York (2008)

    Google Scholar 

  17. Hytönen, T., Pérez, C.: Sharp weighted bounds involving \(A_\infty \). Anal. PDE 6(4), 777–818 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hytönen, T., Pérez, C.: The \(L(\log L)^\epsilon \) endpoint estimate for maximal singular integral operators. J. Math. Anal. Appl. 428(1), 605–626 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Isralowitz, J., Kwon, H.K., Pott, S.: Matrix weighted norm inequalities for commutators and paraproducts with matrix symbols. J. Lond. Math. Soc. 96, 243–270 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Isralowitz, J., Moen, K.: Matrix weighted Poincaré inequalities and applications to degenerate elliptic systems, preprint (2016). arXiv:1601.00111

  21. Jawerth, B.: Weighted inequalities for maximal operators: linearization, localization and factorization. Am. J. Math. 108(2), 361–414 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lerner, A.K.: On an estimate of Calderón–Zygmund operators by dyadic positive operators. J. Anal. Math. 121(1), 141–161 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Monticelli, D.D., Rodney, S.: Existence and spectral theory for weak solutions of Neumann and Dirichlet problems for linear degenerate elliptic operators with rough coefficients. J. Differ. Equ. 259(8), 4009–4044 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Monticelli, D.D., Rodney, S., Wheeden, R.: Boundedness of weak solutions of degenerate quasilinear equations with rough coefficients. Differ. Integral Equ. 25(1–2), 143–200 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Monticelli, D.D., Rodney, S., Wheeden, R.: Harnack’s inequality and Hölder continuity for weak solutions of degenerate quasilinear equations with rough coefficients. Nonlinear Anal. 126, 69–114 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nazarov, F., Petermichl, S., Treil, S., Volberg, A.: Convex body domination and weighted estimates with matrix weights. Adv. Math. 318, 279–306 (2017). arXiv:1701.01907v3

  27. Neugebauer, C.J.: Inserting \(A_{p}\)-weights. Proc. Am. Math. Soc. 87(4), 644–648 (1983)

    MATH  Google Scholar 

  28. Pérez, C.: On sufficient conditions for the boundedness of the Hardy–Littlewood maximal operator between weighted \(L^p\)-spaces with different weights. Proc. Lond. Math. Soc. 3, 135–157 (1995)

    Article  MATH  Google Scholar 

  29. Pérez, C.: Two weighted inequalities for potential and fractional type maximal operators. Indiana Univ. Math. J. 43(2), 663–683 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pérez, C.: Weighted norm inequalities for singular integral operators. J. Lond. Math. Soc. (2) 49(2), 296–308 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  31. Roudenko, S.: Matrix-weighted Besov spaces. Trans. Am. Math. Soc. 355(1), 273–314 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  32. Sawyer, E.T.: Two weight norm inequalities for certain maximal and integral operators. Harmonic Analysis (Minneapolis, Minn., 1981), pp. 102–127 (1982)

  33. Sawyer, E.T., Wheeden, R.: Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces. Am. J. Math. 114(4), 813–874 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  34. Sawyer, E.T., Wheeden, R.: Hölder continuity of weak solutions to subelliptic equations with rough coefficients. Mem. Am. Math. Soc 180(847), x+157 (2006)

    MATH  Google Scholar 

  35. Sawyer, E.T., Wheeden, R.: Degenerate Sobolev spaces and regularity of subelliptic equations. Trans. Am. Math. Soc. 362(4), 1869–1906 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kabe Moen.

Additional information

The first author is supported by NSF Grant DMS-1362425 and research funds from the Dean of the College of Arts and Sciences, the University of Alabama. The second and third authors are supported by the Simons Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz-Uribe OFS, D., Isralowitz, J. & Moen, K. Two Weight Bump Conditions for Matrix Weights. Integr. Equ. Oper. Theory 90, 36 (2018). https://doi.org/10.1007/s00020-018-2455-5

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00020-018-2455-5

Keywords

Mathematics Subject Classification

Navigation