Skip to main content
Log in

A Unifying Approach to Weyl Type Theorems for Banach Space Operators

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

Weyl type theorems have been proved for a considerably large number of classes of operators. In this paper, by introducing the class of quasi totally hereditarily normaloid operators, we obtain a theoretical and general framework from which Weyl type theorems may be promptly established for many of these classes of operators. This framework also entails Weyl type theorems for perturbations f(T + K), where K is algebraic and commutes with T, and f is an analytic function, defined on an open neighborhood of the spectrum of T + K, such that f is non constant on each of the components of its domain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aiena P.: Fredholm and local spectral theory, with application to multipliers. Kluwer Academic Publishers, Dordrecht (2004)

    Google Scholar 

  2. Aiena P.: Algebraically paranormal operators on Banach spaces. Banach J. Math. Anal. 7(2), 136–145 (2013)

    MathSciNet  MATH  Google Scholar 

  3. Aiena P., Aponte E., Bazan E.: Weyl type theorems for left and right polaroid operators. Integral Equ. Oper. Theory 66(1), 1–20 (2010)

    Article  MATH  Google Scholar 

  4. Aiena P., Aponte E.: Polaroid type operators under perturbations. Studia Math. 214(2), 121–136 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aiena P., Biondi M.T.: Browder’s theorem and localized SVEP. Mediterr. J. Math. 2, 137–151 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aiena P., Chō M., González M.: Polaroid type operator under quasi-affinities. J. Math. Anal. Appl. 371(2), 485–495 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Aiena P., Garcia O.: Generalized Browder’s theorem and SVEP. Mediterr. J. Math. 4, 215–228 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Aiena P., Guillen J., Peña P.: Property (w) for perturbation of polaroid operators. Linear Algebra Appl. 4284, 1791–1802 (2008)

    Article  Google Scholar 

  9. Amouch M., Zguitti H.: On the equivalence of Browder’s and generalized Browder’s theorem. Glasgow Math. J. 48, 179–185 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ju An I., Han Y.M.: Weyl’s theorem for algebraically Quasi-class A operators. Integral Equ. Oper. Theory 62(1), 1–10 (2008)

    Article  MATH  Google Scholar 

  11. Berkani M., Sarih M.: On semi B-Fredholm operators. Glasgow Math. J. 43, 457–465 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Berkani M., Koliha J.J.: Weyl type theorems for bounded linear operators. Acta Sci. Math. (Szeged) 69(1–2), 359–376 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Cao X., Guo M., Meng B.: Weyl’s theorem for upper triangular operator matrices. Linear Algebra Appl. 402, 61–73 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Chō M., Duggal B.P., Djordjevíc S.V.: Bishop’s property (β) and an elementary operator. Hokkaido Math. J. 40, 313–335 (2011)

    Article  MathSciNet  Google Scholar 

  15. Coburn L.A.: Weyl’s theorem for nonnormal operators. Mich. Math. J. 20, 529–544 (1970)

    Google Scholar 

  16. Curto R.E., Han Y.M.: Weyl’s theorem for algebraically paranormal operators. Integral Equ. Oper. Theory 47, 307–314 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  17. Djordjevíc S.V., Zguitti H.: Essential point spectra of operator matrices trough local spectral theory. J. Math. Anal. Appl. 338, 285–291 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Duggal B.P.: Weyl’s theorem for totally hereditarily normaloid operators. Rend. Circ. Mat. Palermo. LIII, 417–428 (2004)

    Article  MathSciNet  Google Scholar 

  19. Duggal B.P.: Weyl’s theorem for algebraically totally hereditarily normaloid operators. Math. Anal. Appl. 308, 578–587 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Duggal B.P.: Polaroid operators satisfying Weyl’s theorem. Linear Algebra Appl. 414(1), 271–277 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Duggal B.P.: Hereditarily polaroid operators, SVEP and Weyl’s theorem. J. Math. Anal. Appl. 340, 366–373 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Duggal B.P., Djordjevíc S.V.: Generalized Weyl’s theorem for a class of operators satisfying a norm condition. Math. Proc. Royal Irish Acad. 104A, 75–81 (2004)

    Article  MATH  Google Scholar 

  23. Duggal B.P., Jeon I.H.: On p-quasi-hyponormal operators. Linear Algebra Appl. 422, 331–340 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  24. Duggal B.P., Jeon I.H., Kim I.H.: On Weyl’s theorem for quasi-class A operators. J. Korean Math. Soc. 43(4), 899–909 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Duggal B.P., Kubrusly C.S.: Note on k-paranormal operators. Oper. Matrices 4, 213–223 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Furuta T., Ito M., Yamazaki T.: A subclass of paranormal operators including class of log-hyponormal ans several related classes. Scientiae Mathematicae 1, 389–403 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Han Y.K., Lee H.Y., Lee W.Y.: Invertible completions of 2 × 2 upper triangular operator matrices. Proc. Am. Math. Soc. 129, 119–123 (2001)

    Article  MathSciNet  Google Scholar 

  28. Heuser H.: Functional Analysis. Wiley, New York (1982)

    MATH  Google Scholar 

  29. Kim I.H.: On (p, k)-quasihyponormal operators. Math. Inequal. Appl. 7, 629–638 (2004)

    MathSciNet  MATH  Google Scholar 

  30. Laursen K.B., Neumann M.M.: Introduction to local spectral theory. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  31. Lee W.Y.: Weyl’spectra of operator matrices. Proc. Am. Math. Soc. 129, 131–138 (2001)

    Article  MATH  Google Scholar 

  32. Mecheri S.: Isolated points of spectrum of k-quasi-*-class A operators. Studia Math. 208(1), 87–96 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  33. Mecheri S.: Bishop’s property (β) and Riesz idempotent for k-quasi- paranormal operators. Banach J. Math. Anal. 6, 147–154 (2012)

    MathSciNet  MATH  Google Scholar 

  34. Mecheri, S.: On a new clas of operators and Weyl type theorems. (2012), to appear in Filomat

  35. Mecheri, S., Braha, L.: Polaroid and p−*−paranormal operators. (2012), to appear in Mathematical Inequalities and Appl

  36. Oudghiri M.: Weyl’s and Browder’s theorem for operators satisfying the SVEP. Studia Math. 163, 85–101 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  37. Tanahashi K., Jeon I.H., Kim I.K., Uchiyama A.: Quasinilpotent part of clas A or (p,k)-quasihyponormal operators. Oper. Adv. Appl. 187, 249–250 (2008)

    Google Scholar 

  38. Yuan J., Gao Z.: Weyl spectrum of class A(n) and n-paranormal operators. Integral Equ. Oper. Theory 60, 289–298 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  39. Yuan J.T., Ji G.X.: On (n, k)-quasi paranormal operators. Studia Math. 209, 289–301 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  40. Zerouali E.H., Zguitti H.: Perturbation of spectra of operator matrices and local spectral theory. J. Math. Anal. Appl. 324, 292–1005 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pietro Aiena.

Additional information

This research was supported by CDCHTA of Universidad de los Andes, Project I-1295-12-05-A.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aiena, P., Guillén, J.R. & Peña, P. A Unifying Approach to Weyl Type Theorems for Banach Space Operators. Integr. Equ. Oper. Theory 77, 371–384 (2013). https://doi.org/10.1007/s00020-013-2097-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-013-2097-6

Mathematics Subject Classification (2010)

Keywords

Navigation