Skip to main content
Log in

Skew-Self-Adjoint Dirac System with a Rectangular Matrix Potential: Weyl Theory, Direct and Inverse Problems

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

A non-classical Weyl theory is developed for skew-self-adjoint Dirac systems with rectangular matrix potentials. The notion of the Weyl function is introduced and direct and inverse problems are solved. A Borg–Marchenko type uniqueness result and the evolution of the Weyl function for the corresponding focusing nonlinear Schrödinger equation are also derived.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz M.J., Kaup D.J., Newell A.C., Segur H.: The inverse scattering transform: Fourier analysis for nonlinear problems. Stud. Appl. Math. 53, 249–315 (1974)

    MathSciNet  Google Scholar 

  2. Ablowitz M.J., Prinari B., Trubatch A.D.: Discrete and Continuous Nonlinear Schrödinger Systems. London Mathematical Society Lecture Note Series, vol. 302. Cambridge University Press, Cambridge (2004)

    Google Scholar 

  3. Ablowitz, M.J., Segur,H.: Solitons and the inverse scattering transform. SIAM Stud. Appl. Math. vol. 4. Philadelphia (1981)

  4. Alpay, D., Gohberg, I., Lerer, L., Kaashoek, M.A., Sakhnovich, A.L.: Krein systems. In: Operator Theory Adv. Appl., vol. 191, pp. 19–36. Birkhäuser, Basel (2009)

  5. Alpay D., Gohberg I., Kaashoek M.A., Lerer L., Sakhnovich A.: Krein systems and canonical systems on a finite interval: accelerants with a jump discontinuity at the origin and continuous potentials. Integr. Equ. Oper. Theory 68(1), 115–150 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arov, D.Z.: On monotone families of J-contractive matrix-valued functions. St. Petersbg. Math. J. 9(6), 1025–1051 (1997)

    Google Scholar 

  7. Arov D.Z., Dym H.: The bitangential inverse spectral problem for canonical systems. J. Funct. Anal. 214(2), 312–385 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arov D.Z., Dym H.: Direct and inverse problems for differential systems connected with Dirac systems and related factorization problems. Indiana Univ. Math. J. 54(6), 1769–1815 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  9. Berezanskii Yu.M.: Integration of non-linear difference equations by means of inverse problem technique. Dokl. Akad. Nauk SSSR 281(1), 16–19 (1985)

    MathSciNet  Google Scholar 

  10. Berezanskii Yu.M., Gekhtman M.I.: Inverse problem of spectral analysis and nonabelian chains of nonlinear equations. Ukr. Math. J. 42(6), 645–658 (1990)

    Article  MathSciNet  Google Scholar 

  11. Clark S., Gesztesy F.: Weyl–Titchmarsh M-function asymptotics for matrix-valued Schrödinger operators. Proc. Lond. Math. Soc. III. Ser. 82(3), 701–724 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Clark S., Gesztesy F.: Weyl–Titchmarsh M-function asymptotics, local uniqueness results, trace formulas, and Borg-type theorems for Dirac operators. Trans. Am. Math. Soc. 354, 3475–3534 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Clark S., Gesztesy F.: On self-adjoint and J-self-adjoint Dirac-type operators: a case study. Contemp. Math. 412, 103–140 (2006)

    Article  MathSciNet  Google Scholar 

  14. Clark S., Gesztesy F., Zinchenko M.: Weyl–Titchmarsh theory and Borg–Marchenko-type uniqueness results for CMV operators with matrix-valued Verblunsky coefficients. Oper. Matrices 1(4), 535–592 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Clark S., Gesztesy F., Zinchenko M.: Borg–Marchenko-type uniqueness results for CMV operators. Skr. K. Nor. Vidensk. Selsk. 1, 1–18 (2008)

    MathSciNet  Google Scholar 

  16. Dubovoj, V.K., Fritzsche, B., Kirstein, B.: Matricial version of the classical Schur problem. Teubner-Texte zur Mathematik [Teubner Texts in Mathematics], vol. 129. B.G. Teubner Verlagsgesellschaft mbH, Stuttgart (1992)

  17. Dym, H., Iacob, A.: Positive definite extensions, canonical equations and inverse problems. In: Operator Theory Adv. Appl., vol. 12, pp. 141–240. Birkhäuser, Basel (1984)

  18. Faddeev L.D., Takhtajan L.A.: Hamiltonian Methods in the Theory of Solitons. Springer, New York (1986)

    MATH  Google Scholar 

  19. Fritzsche, B., Kirstein, B., Roitberg, I.Ya., Sakhnovich, A.L.: Weyl theory and explicit solutions of direct and inverse problems for a Dirac system with rectangular matrix potential. Oper. Matrices (to appear). arXiv: 1105.2013 (2011)

  20. Fritzsche, B., Kirstein, B., Roitberg, I.Ya., Sakhnovich, A.L.: Recovery of Dirac system from the rectangular Weyl matrix function. Inverse Problems 28, 015010 (2012)

    Google Scholar 

  21. Fritzsche, B., Kirstein, B., Roitberg, I.Ya., Sakhnovich, A.L.: Operator identities corresponding to inverse problems. Indagationes Mathematicae (issue dedicated to the memory of I. Gohberg) (to appear). arXiv:1106.0812 (2012)

  22. Fritzsche B., Kirstein B., Sakhnovich A.L.: Semiseparable integral operators and explicit solution of an inverse problem for the skew-self-adjoint Dirac-type system. Integr. Equ. Oper. Theory 66, 231–251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Fritzsche B., Kirstein B., Sakhnovich A.L.: Weyl functions of generalized Dirac systems: integral representation, the inverse problem and discrete interpolation. J. Anal. Math. 116(1), 17–51 (2012)

    Article  MathSciNet  Google Scholar 

  24. Gesztesy F., Simon B.: On local Borg-Marchenko uniqueness results. Commun. Math. Phys. 211, 273–287 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gesztesy F., Simon B.: A new approach to inverse spectral theory, II: general real potentials and the connection to the spectral measure. Ann. Math. (2) 152(2), 593–643 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  26. Gohberg, I., Goldberg, S., Kaashoek, M.A.: Classes of Linear Operators, I. Operator Theory Adv. Appl., vol. 49. Birkhäuser, Basel (1990)

  27. Gohberg I., Kaashoek M.A., Sakhnovich A.L.: Pseudo-canonical systems with rational Weyl functions: explicit formulas and applications. J. Differ. Equ. 146(2), 375–398 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kac M., Moerbeke P.: A complete solution of the periodic Toda problem. Proc. Natl. Acad. Sci. USA 72, 2879–2880 (1975)

    Article  MATH  Google Scholar 

  29. Kostenko, A., Sakhnovich, A., Teschl, G.: Inverse eigenvalue problems for perturbed spherical Schrödinger operators. Inverse Problems 26, 105013 (2010)

    Google Scholar 

  30. Krein M.G.: Continuous analogues of propositions on polynomials orthogonal on the unit circle (Russian). Dokl. Akad. Nauk SSSR 105, 637–640 (1955)

    MathSciNet  Google Scholar 

  31. Langer, M., Woracek, H.: A local inverse spectral theorem for Hamiltonian systems. Inverse Problems 27, 055002 (2011)

    Google Scholar 

  32. Levitan, B.M., Sargsjan, I.S.: Sturm–Liouville and Dirac operators. Mathematics and its Applications, vol. 59. Kluwer, Dordrecht (1990)

  33. Marchenko, V.A.: Sturm–Liouville operators and applications. Operator Theory Adv. Appl., vol. 22. Birkhäuser, Basel (1986)

  34. Mennicken R., Sakhnovich A.L., Tretter C.: Direct and inverse spectral problem for a system of differential equations depending rationally on the spectral parameter. Duke Math. J. 109, 413–449 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  35. Novikov S.P.: A periodic problem for the Korteweg–de Vries equation. Funct. Anal. Appl. 8(3), 236–246 (1974)

    Article  MATH  Google Scholar 

  36. Orlov S.A.: Nested matrix balls, analytically depending on a parameter, and theorems on invariance of ranks of radii of limit matrix balls. Math. USSR Izvestija 10, 565–613 (1976)

    Article  Google Scholar 

  37. Paley, R.E.A.C., Wiener, N.: Fourier transforms in the complex domain. American Mathematical Society Colloquium Publications, vol. 19. American Mathematical Society, Providence (1987)

  38. Potapov V.P.: The multiplicative structure of J-contractive matrix functions. Am. Math. Soc. Transl. 15, 131–243 (1960)

    MathSciNet  MATH  Google Scholar 

  39. Sakhnovich A.L.: Asymptotics of spectral functions of an S-colligation. Soviet Math. (Iz. VUZ) 32, 92–105 (1988)

    MathSciNet  MATH  Google Scholar 

  40. Sakhnovich A.L.: A nonlinear Schrödinger equation on the semiaxis and a related inverse problem. Ukrain. Math. J. 42(3), 316–323 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sakhnovich A.L.: The Goursat problem for the sine-Gordon equation and the inverse spectral problem. Russ. Math. Iz. VUZ 36(11), 42–52 (1992)

    MathSciNet  Google Scholar 

  42. Sakhnovich A.L.: Dirac type and canonical systems: spectral and Weyl–Titchmarsh functions, direct and inverse problems. Inverse Problems 18, 331–348 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sakhnovich A.L.: Second harmonic generation: Goursat problem on the semi-strip, Weyl functions and explicit solutions. Inverse Problems 21(2), 703–716 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sakhnovich A.L.: Skew-self-adjoint discrete and continuous Dirac-type systems: inverse problems and Borg-Marchenko theorems. Inverse Problems 22(6), 2083–2101 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  45. Sakhnovich A.L.: On the compatibility condition for linear systems and a factorization formula for wave functions. J. Differ. Equ. 252, 3658–3667 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Sakhnovich A.L.: Sine-Gordon theory in a semi-strip. Nonlinear Anal. 75, 964–974 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  47. Sakhnovich A.L., Karelin A.A., Seck-Tuoh-Mora J., Perez-Lechuga G., Gonzalez-Hernandez M.: On explicit inversion of a subclass of operators with D-difference kernels and Weyl theory of the corresponding canonical systems. Positivity 14, 547–564 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  48. Sakhnovich L.A.: Spectral analysis of Volterra’s operators defined in the space of vector-functions L 2 m (0,l). Ukr. Mat. Zh. 16(2), 259–268 (1964)

    MathSciNet  MATH  Google Scholar 

  49. Sakhnovich L.A.: On the factorization of the transfer matrix function. Sov. Math. Dokl. 17, 203–207 (1976)

    MATH  Google Scholar 

  50. Sakhnovich, L.A.: Nonlinear equations and inverse problems on the half-axis. Preprint 30, Inst. Mat. AN Ukr. SSR. Izd-vo Inst. Matem. AN Ukr. SSR, Kiev (1987)

  51. Sakhnovich L.A.: Factorisation problems and operator identities. Russian Math. Surv. 41, 1–64 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  52. Sakhnovich L.A.: The method of operator identities and problems in analysis. St. Petersburg Math. J. 5(1), 1–69 (1994)

    MathSciNet  Google Scholar 

  53. Sakhnovich, L.A.: Spectral theory of canonical differential systems. Method of operator identities. Operator Theory Adv. Appl., vol. 107. Birkhäuser, Basel (1999)

  54. Sakhnovich, L.A.: Weyl–Titchmarsh matrix functions and spectrum of non-selfadjoint Dirac type equation. In: Operator Theory Adv. Appl., vol. 149, pp. 539–551. Birkhäuser, Basel (2004)

  55. Simon B.: A new approach to inverse spectral theory, I: fundamental formalism. Ann. Math. 150, 1029–1057 (1999)

    Article  MATH  Google Scholar 

  56. Sulem C., Sulem P.-L.: The Nonlinear Schrödinger Equation. Self-Focusing and Wave Collapse. Applied Mathematical Sciences, vol. 139. Springer, New York (1999)

    Google Scholar 

  57. Teschl, G.: Jacobi operators and completely integrable nonlinear lattices. Mathematical Surveys and Monographs, vol. 72. Amer. Math. Soc., Rhode Island (2000)

  58. Teschl, G.: Mathematical methods in quantum mechanics; with applications to Schrödinger operators. Graduate Studies in Mathematics, vol. 99. Amer. Math. Soc., Rhode Island (2009)

  59. Zakharov V.E., Mikhailov A.V.: Relativistically invariant two-dimensional models of field theory which are integrable by means of the inverse scattering problem method. Soviet Phys. JETP 74(6), 1953–1973 (1978)

    MathSciNet  Google Scholar 

  60. Zaharov V.E., Shabat A.B.: On soliton interaction in stable media. JETP 64, 1627–1639 (1973)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sakhnovich.

Additional information

The work of I. Ya. Roitberg was supported by the German Research Foundation (DFG) under grant no. KI 760/3-1 and the work of A.L. Sakhnovich was supported by the Austrian Science Fund (FWF) under Grant no. Y330.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fritzsche, B., Kirstein, B., Roitberg, I.Y. et al. Skew-Self-Adjoint Dirac System with a Rectangular Matrix Potential: Weyl Theory, Direct and Inverse Problems. Integr. Equ. Oper. Theory 74, 163–187 (2012). https://doi.org/10.1007/s00020-012-1997-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-012-1997-1

Mathematics Subject Classification (2010)

Keywords

Navigation