Skip to main content
Log in

Toeplitz Operators on Generalized Bergman Spaces

  • Published:
Integral Equations and Operator Theory Aims and scope Submit manuscript

Abstract

We consider the weighted Bergman spaces \({\mathcal {H}L^{2}(\mathbb {B}^{d}, \mu_{\lambda})}\), where we set \({d\mu_{\lambda}(z) = c_{\lambda}(1-|z|^2)^{\lambda} d\tau(z)}\), with τ being the hyperbolic volume measure. These spaces are nonzero if and only if λ > d. For 0 < λ ≤ d, spaces with the same formula for the reproducing kernel can be defined using a Sobolev-type norm. We define Toeplitz operators on these generalized Bergman spaces and investigate their properties. Specifically, we describe classes of symbols for which the corresponding Toeplitz operators can be defined as bounded operators or as a Hilbert–Schmidt operators on the generalized Bergman spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anker J.-P., Ji L. (1999) Heat kernel and Green function estimates on noncompact symmetric spaces. Geom. Funct. Anal. 9: 1035–1091

    Article  MATH  MathSciNet  Google Scholar 

  2. J. Arazy, Integral formulas for the invariant inner products in spaces of analytic functions on the unit ball. Function spaces (Edwardsville, IL, 1990), 9–23, Lecture Notes in Pure and Appl. Math., 136, Dekker, New York, 1992.

  3. Arazy J., Zhang G. (2003) Homogeneous multiplication operators on bounded symmetric domains. J. Funct. Anal. 202: 44–66

    Article  MATH  MathSciNet  Google Scholar 

  4. F. Beatrous Jr. and J. Burbea, Holomorphic Sobolev spaces on the ball. Dissertationes Math. (Rozprawy Mat.) 276 (1989), 60 pp.

  5. Berezin F.A. (1974) Quantization. Math. USSR Izvestija 8: 1109–1165

    Article  MATH  Google Scholar 

  6. Berezin F.A. (1976) Quantization in complex symmetric spaces. Math. USSR Izvestija 9: 341–379

    Article  MATH  MathSciNet  Google Scholar 

  7. Bordemann M., Meinrenken E., Schlichenmaier M. (1994) Toeplitz quantization of Kähler manifolds and gl(N), N → ∞ limits. Comm. Math. Phys. 165: 281–296

    Article  MATH  MathSciNet  Google Scholar 

  8. Borthwick D., Lesniewski A., Upmeier H. (1993) Nonperturbative deformation quantization of Cartan domains. J. Funct. Anal. 113: 153–176

    Article  MATH  MathSciNet  Google Scholar 

  9. Borthwick D., Paul T., Uribe A. (1995) Legendrian distributions with applications to relative Poincaré series. Invent. Math. 122: 359–402

    Article  MATH  MathSciNet  Google Scholar 

  10. Coburn L.A. (1992) Deformation estimates for the Berezin-Toeplitz quantization. Comm. Math. Phys. 149: 415–424

    Article  MATH  MathSciNet  Google Scholar 

  11. Cowling M. (1978) The Kunze–Stein phenomenon. Ann. Math. 107: 209–234

    Article  MathSciNet  Google Scholar 

  12. P. Duren and A. Schuster, Bergman spaces. Mathematical surveys and monographs; no.100, American Mathematical Society, 2004.

  13. M. Engliš, Berezin transform and the Laplace-Beltrami operator. Algebra i Analiz 7 (1995), 176–195; translation in St. Petersburg Math. J. 7 (1996), 633–647.

  14. G. Folland, Harmonic analysis in phase space. Princeton University Press, 1989.

  15. B. C. Hall, Holomorphic methods in analysis and mathematical physics. In: First Summer School in Analysis and Mathematical Physics (S. Pérez-Esteva and C. Villegas-Blas, Eds.), 1–59, Contemp. Math., 260, Amer. Math. Soc., 2000.

  16. Hall B.C., Lewkeeratiyutkul W. (2004) Holomorphic Sobolev spaces and the generalized Segal–Bargmann transform. J. Funct. Anal. 217: 192–220

    Article  MATH  MathSciNet  Google Scholar 

  17. S. Helgason, Differential geometry, Lie groups, and symmetric spaces. Academic Press, 1978.

  18. S. Helgason, Groups and geometric analysis: Integral geometry, invariant differential operators, and spherical functions, corrected reprint of the 1984 edition. Amer. Math. Soc., 2000.

  19. S. Helgason, Geometric analysis on symmetric spaces. Amer. Math. Soc., 1994.

  20. H. Hedenmalm, B. Korenblum and K. Zhu, Theory of Bergman spaces. Springer-Verlag, 2000.

  21. Kaptanoğlu H.T. (2002) Besov spaces and Bergman projections on the ball. C. R. Math. Acad. Sci. Paris 335: 729–732

    MATH  MathSciNet  Google Scholar 

  22. Klimek S., Lesniewski A. (1976) Quantum Riemann surfaces I. The unit disc. Comm. Math. Phys. 46: 103–122

    Google Scholar 

  23. A. Konechny, S. G. Rajeev, and O. T. Turgut, Classical mechanics on Grassmannian and disc. In: Geometry, integrability and quantization (Varna, 2000), 181–207, Coral Press Sci. Publ., Sofia, 2001.

  24. Kunze R.A., M E. Stein (1960) Uniformly bounded representations and harmonic analysis of the 2 × 2 unimodular group. Amer. J. Math. 82: 1–62

    Article  MATH  MathSciNet  Google Scholar 

  25. Rajeev S.G., Turgut O.T. (1998) Geometric quantization and two-dimensional QCD. Comm. Math. Phys. 192: 493–517

    Article  MATH  MathSciNet  Google Scholar 

  26. Rawnsley J.H. (1977) Coherent states and Kähler manifolds. Quart. J. Math. Oxford Ser. (2) 28: 403–415

    Article  MATH  MathSciNet  Google Scholar 

  27. Rawnsley J.H., Cahen M., Gutt S. (1990) Quantization of Kähler manifolds. I. Geometric interpretation of Berezin’s quantization. J.Geom. Phys. 7: 45–62

    Article  MATH  MathSciNet  Google Scholar 

  28. Strichartz R. (1989) Harmonic analysis as spectral theory of Laplacians. J. Funct. Anal. 87: 51–148

    Article  MATH  MathSciNet  Google Scholar 

  29. Unterberger A., Upmeier H (1994) The Berezin transform and invariant differential operators. Comm. Math. Phys 164: 563–597

    Article  MATH  MathSciNet  Google Scholar 

  30. Z. Yan, Invariant differential operators and holomorphic function spaces. J. Lie Theory 10 (2000), 31 pp.

    Google Scholar 

  31. R. Zhao and K. H. Zhu, Theory of Bergman spaces in the unit ball of \({\mathbb {C}^n}\). Preprint, arxiv.org/abs/math/0611093.

  32. Zhu K. (1995) Holomorphic Besov spaces on bounded symmetric domains. Quart. J. Math. Oxford Ser. (2) 46: 239–256

    Article  MATH  MathSciNet  Google Scholar 

  33. K. Zhu, Spaces of holomorphic functions in the unit ball. Springer-Verlag, 2004.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brian C. Hall.

Additional information

Supported in part by a grant from Prince of Songkla University.

Supported in part by NSF Grant DMS-0555862.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chailuek, K., Hall, B.C. Toeplitz Operators on Generalized Bergman Spaces. Integr. Equ. Oper. Theory 66, 53–77 (2010). https://doi.org/10.1007/s00020-009-1734-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00020-009-1734-6

Mathematics Subject Classification (2010)

Keywords

Navigation