Skip to main content

Advertisement

Log in

Memory formation and the regulation of gene expression

  • Published:
Cellular and Molecular Life Sciences CMLS Aims and scope Submit manuscript

Abstract.

On a cellular level, formation of memory is based on a selective change in synaptic efficacy that is both fast and, in case of important information, long-lasting. Rapidity of cellular changes is achieved by modifying preexisting synaptic molecules (receptors, ion channels), which instantaneously alters the efficacy of synaptic transmission. Endurance, that is the formation of long-term memory (LTM), is based on transient and perhaps also long-lasting changes in protein synthesis. A number of different methods exist to interfere with the synthesis of specific proteins or proteins in general. Other methods, in turn, help to identify proteins whose synthesis is changed following learning. These mostly molecular methods are briefly described in the present review. Their successful application in a variety of memory paradigms in invertebrates and vertebrates is illustrated. The data support the importance of selective changes in gene expression for LTM. Proteins newly synthesized during memory consolidation are likely to contribute to restructuring processes at the synapse, altering the efficiency of transmission beyond the scope of STM. Increased or, less often, decreased synthesis of proteins appears during specific time windows following learning. Recent evidence supports older data suggesting that two or even more waves of protein synthesis exist during the consolidation period. It is expected that the new molecular methods will help to identify and characterize molecules whose expression changes during LTM formation even in complex vertebrate learning paradigms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Author information

Authors and Affiliations

Authors

Additional information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stork, O., Welzl, H. Memory formation and the regulation of gene expression. CMLS, Cell. Mol. Life Sci. 55, 575–592 (1999). https://doi.org/10.1007/s000180050316

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s000180050316

Navigation