Skip to main content

Advertisement

Log in

LncRNA LENGA acts as a tumor suppressor in gastric cancer through BRD7/TP53 signaling

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

It has been established that long noncoding RNAs (lncRNAs) play a crucial role in various cancer types, and there are vast numbers of long noncoding RNA transcripts that have been identified by high-throughput methods. However, the biological function of many novel aberrantly expressed lncRNAs remains poorly elucidated, especially in gastric cancer (GC). Here, we first identified a novel lncRNA termed LENGA (Low Expression Noncoding RNA in Gastric Adenocarcinoma), which was significantly downregulated in GC tissues compared to adjacent normal tissues. Next, we found that reduced expression of LENGA in GC was also associated with a shorter life expectancy. The proliferation, migration, and invasion of GC cells were increased after LENGA knockdown but restrained after LENGA overexpression in vitro and in vivo. It was further demonstrated that LENGA physically binds to BRD7 (bromodomain-containing 7) in the bromodomain domain and acts as a scaffold that enhances the interaction between BRD7 and TP53 (tumor protein p53), regulating the expression of a subset of genes in the p53 pathway, including CDKN1A (cyclin-dependent kinase inhibitor 1A) and PCDH7 (protocadherin 7), at the transcriptional level. Consistently, the expression of CDKN1A has a positive correlation with LENGA in GC patients. Taken together, this study uncovers a novel tumor suppressor lncRNA, LENGA, and describes its biological function, molecular mechanism, and clinical significance. This highlights the potential importance of targeting the LENGA/BRD7/TP53 axis in GC treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and materials

All data that support the findings of this study are available from the corresponding author upon reasonable request. High-throughput sequence data of RNA-seq and CUT&Tag was deposited in NCBI, GEO (GSE189471).

Abbreviations

lncRNA:

Long noncoding RNA

GC:

Gastric cancer

LENGA:

Low Expression Noncoding RNA in Gastric Adenocarcinoma

BRD7:

Bromodomain-containing 7

TP53:

Tumor protein p53

CDKN1A:

Cyclin-dependent kinase inhibitor 1A

STR:

Short tandem repeat

GSPs:

Gene-specific primers

RIP:

RNA immunoprecipitation

SPF:

Specific pathogen-free

GEO:

Gene Expression Omnibus

TCGA:

The Cancer Genome Atlas

NCBI:

National Center for Biotechnology Information

RACE:

Rapid amplification of cDNA ends

FISH:

Fluorescent in situ hybridization

CCK-8:

Cell Counting Kit-8

4s1m:

4 × Streptavidin-binding RNA aptamer

MS:

Mass spectrometry

FL:

Full-length

CUT&Tag:

Cleavage Under Targets and Tagmentation

GSEA:

Gene set enrichment analysis

SWI/SNF:

Switch/Sucrose Non-Fermentable complex

References

  1. Smyth EC, Nilsson M, Grabsch HI, van Grieken NCT, Lordick F (2020) Gastric cancer. Lancet 396(10251):635–648

    Article  CAS  Google Scholar 

  2. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71(3):209–249

    Article  Google Scholar 

  3. Bittoni A, Maccaroni E, Scartozzi M, Berardi R, Cascinu S (2010) Chemotherapy for locally advanced and metastatic gastric cancer: state of the art and future perspectives. Eur Rev Med Pharmacol Sci 14(4):309–314

    CAS  Google Scholar 

  4. Kopp F, Mendell JT (2018) Functional classification and experimental dissection of long noncoding RNAs. Cell 172(3):393–407

    Article  CAS  Google Scholar 

  5. Wang KC, Chang HY (2011) Molecular mechanisms of long noncoding RNAs. Mol Cell 43(6):904–914

    Article  CAS  Google Scholar 

  6. Schmitt AM, Chang HY (2016) Long noncoding RNAs in cancer pathways. Cancer Cell 29(4):452–463

    Article  CAS  Google Scholar 

  7. Dragomir MP, Kopetz S, Ajani JA, Calin GA (2020) Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility. Gut 69(4):748–763

    Article  CAS  Google Scholar 

  8. Sun TT, He J, Liang Q, Ren LL, Yan TT, Yu TC, Tang JY, Bao YJ, Hu Y, Lin Y et al (2016) LncRNA GClnc1 promotes gastric carcinogenesis and may act as a modular scaffold of WDR5 and KAT2A complexes to specify the histone modification pattern. Cancer Discov 6(7):784–801

    Article  CAS  Google Scholar 

  9. Zhuo W, Liu Y, Li S, Guo D, Sun Q, Jin J, Rao X, Li M, Sun M, Jiang M et al (2019) Long noncoding RNA GMAN, up-regulated in gastric cancer tissues, is associated with metastasis in patients and promotes translation of ephrin A1 by competitively binding GMAN-AS. Gastroenterology 156(3):676-691e611

    Article  CAS  Google Scholar 

  10. Luo Y, Zheng S, Wu Q, Wu J, Zhou R, Wang C, Wu Z, Rong X, Huang N, Sun L et al (2021) Long noncoding RNA (lncRNA) EIF3J-DT induces chemoresistance of gastric cancer via autophagy activation. Autophagy 17:1–19

    Article  Google Scholar 

  11. Kaeser MD, Aslanian A, Dong MQ, Yates JR 3rd, Emerson BM (2008) BRD7, a novel PBAF-specific SWI/SNF subunit, is required for target gene activation and repression in embryonic stem cells. J Biol Chem 283(47):32254–32263

    Article  CAS  Google Scholar 

  12. Levine AJ (2020) p53: 800 million years of evolution and 40 years of discovery. Nat Rev Cancer 20(8):471–480

    Article  CAS  Google Scholar 

  13. Huang Y, Zhao Q, Zhou CX, Gu ZM, Li D, Xu HZ, Wiedmer T, Sims PJ, Zhao KW, Chen GQ (2006) Antileukemic roles of human phospholipid scramblase 1 gene, evidence from inducible PLSCR1-expressing leukemic cells. Oncogene 25(50):6618–6627

    Article  CAS  Google Scholar 

  14. Leppek K, Stoecklin G (2014) An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res 42(2):e13

    Article  CAS  Google Scholar 

  15. Ma CN, Wo LL, Wang DF, Zhou CX, Li JC, Zhang X, Gong XF, Wang CL, He M, Zhao Q (2021) Hypoxia activated long non-coding RNA HABON regulates the growth and proliferation of hepatocarcinoma cells by binding to and antagonizing HIF-1 alpha. RNA Biol 18(11):1791–1806

    Article  CAS  Google Scholar 

  16. Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet journal 17(1):10

    Article  Google Scholar 

  17. Kim D, Paggi JM, Park C, Bennett C, Salzberg SL (2019) Graph-based genome alignment and genotyping with HISAT2 and HISAT-genotype. Nat Biotechnol 37(8):907–915

    Article  CAS  Google Scholar 

  18. Trapnell C, Williams BA, Pertea G, Mortazavi A, Kwan G, van Baren MJ, Salzberg SL, Wold BJ, Pachter L (2010) Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation. Nat Biotechnol 28(5):511–515

    Article  CAS  Google Scholar 

  19. Zhou Y, Zhou B, Pache L, Chang M, Khodabakhshi AH, Tanaseichuk O, Benner C, Chanda SK (2019) Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun 10(1):1523

    Article  Google Scholar 

  20. Kaya-Okur HS, Wu SJ, Codomo CA, Pledger ES, Bryson TD, Henikoff JG, Ahmad K, Henikoff S (2019) CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10(1):1930

  21. Kaya-Okur HS, Janssens DH, Henikoff JG, Ahmad K, Henikoff S (2020) Efficient low-cost chromatin profiling with CUT&Tag. Nat Protoc 15(10):3264–3283

    Article  CAS  Google Scholar 

  22. Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE, Nusbaum C, Myers RM, Brown M, Li W et al (2008) Model-based analysis of ChIP-Seq (MACS). Genome Biol 9(9):R137

    Article  Google Scholar 

  23. Ramírez F, Ryan DP, Grüning B, Bhardwaj V, Kilpert F, Richter AS, Heyne S, Dündar F, Manke T (2016) deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44(W1):W160–W165

    Article  Google Scholar 

  24. Consortium EP (2012) An integrated encyclopedia of DNA elements in the human genome. Nature 489(7414):57–74

    Article  Google Scholar 

  25. Song YX, Sun JX, Zhao JH, Yang YC, Shi JX, Wu ZH, Chen XW, Gao P, Miao ZF, Wang ZN (2017) Non-coding RNAs participate in the regulatory network of CLDN4 via ceRNA mediated miRNA evasion. Nat Commun 8(1):289

    Article  Google Scholar 

  26. Fei ZH, Yu XJ, Zhou M, Su HF, Zheng Z, Xie CY (2016) Upregulated expression of long non-coding RNA LINC00982 regulates cell proliferation and its clinical relevance in patients with gastric cancer. Tumour Biol 37(2):1983–1993

    Article  CAS  Google Scholar 

  27. Liu Z, Chen Z, Fan R, Jiang B, Chen X, Chen Q, Nie F, Lu K, Sun M (2017) Over-expressed long noncoding RNA HOXA11-AS promotes cell cycle progression and metastasis in gastric cancer. Mol Cancer 16(1):82

    Article  Google Scholar 

  28. Gong P, Qiao F, Wu H, Cui H, Li Y, Zheng Y, Zhou M, Fan H (2018) LncRNA UCA1 promotes tumor metastasis by inducing miR-203/ZEB2 axis in gastric cancer. Cell Death Dis 9(12):1158

    Article  Google Scholar 

  29. Wang L, Park HJ, Dasari S, Wang S, Kocher JP, Li W (2013) CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model. Nucleic Acids Res 41(6):e74

    Article  CAS  Google Scholar 

  30. Statello L, Guo CJ, Chen LL, Huarte M (2021) Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 22(2):96–118

    Article  CAS  Google Scholar 

  31. Niu W, Luo Y, Zhou Y, Li M, Wu C, Duan Y, Wang H, Fan S, Li Z, Xiong W et al (2020) BRD7 suppresses invasion and metastasis in breast cancer by negatively regulating YB1-induced epithelial-mesenchymal transition. J Exp Clin Cancer Res 39(1):30

    Article  Google Scholar 

  32. Wu WJ, Hu KS, Chen DL, Zeng ZL, Luo HY, Wang F, Wang DS, Wang ZQ, He F, Xu RH (2013) Prognostic relevance of BRD7 expression in colorectal carcinoma. Eur J Clin Invest 43(2):131–140

    Article  CAS  Google Scholar 

  33. Park YA, Lee JW, Kim HS, Lee YY, Kim TJ, Choi CH, Choi JJ, Jeon HK, Cho YJ, Ryu JY et al (2014) Tumor suppressive effects of bromodomain-containing protein 7 (BRD7) in epithelial ovarian carcinoma. Clin Cancer Res 20(3):565–575

    Article  CAS  Google Scholar 

  34. Drost J, Mantovani F, Tocco F, Elkon R, Comel A, Holstege H, Kerkhoven R, Jonkers J, Voorhoeve PM, Agami R et al (2010) BRD7 is a candidate tumour suppressor gene required for p53 function. Nat Cell Biol 12(4):380–389

    Article  CAS  Google Scholar 

  35. Burrows AE, Smogorzewska A, Elledge SJ (2010) Polybromo-associated BRG1-associated factor components BRD7 and BAF180 are critical regulators of p53 required for induction of replicative senescence. Proc Natl Acad Sci USA 107(32):14280–14285

    Article  CAS  Google Scholar 

  36. Sun H, Liu J, Zhang J, Shen W, Huang H, Xu C, Dai H, Wu J, Shi Y (2007) Solution structure of BRD7 bromodomain and its interaction with acetylated peptides from histone H3 and H4. Biochem Biophys Res Commun 358(2):435–441

    Article  CAS  Google Scholar 

  37. Lloyd JT, Glass KC (2018) Biological function and histone recognition of family IV bromodomain-containing proteins. J Cell Physiol 233(3):1877–1886

    Article  CAS  Google Scholar 

  38. Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T, Shahab A, Yong HC, Fu Y, Weng Z et al (2006) A global map of p53 transcription-factor binding sites in the human genome. Cell 124(1):207–219

    Article  CAS  Google Scholar 

  39. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144(5):646–674

    Article  CAS  Google Scholar 

  40. Jones PA, Issa JP, Baylin S (2016) Targeting the cancer epigenome for therapy. Nat Rev Genet 17(10):630–641

    Article  CAS  Google Scholar 

  41. Mita MM, Mita AC (2020) Bromodomain inhibitors a decade later: a promise unfulfilled? Br J Cancer 123(12):1713–1714

    Article  Google Scholar 

  42. Harte MT, O’Brien GJ, Ryan NM, Gorski JJ, Savage KI, Crawford NT, Mullan PB, Harkin DP (2010) BRD7, a subunit of SWI/SNF complexes, binds directly to BRCA1 and regulates BRCA1-dependent transcription. Cancer Res 70(6):2538–2547

    Article  CAS  Google Scholar 

  43. Chiu YH, Lee JY, Cantley LC (2014) BRD7, a tumor suppressor, interacts with p85alpha and regulates PI3K activity. Mol Cell 54(1):193–202

    Article  CAS  Google Scholar 

  44. Yu X, Li Z, Shen J (2016) BRD7: a novel tumor suppressor gene in different cancers. Am J Transl Res 8(2):742–748

    CAS  Google Scholar 

  45. Daneshvar K, Ardehali MB, Klein IA, Hsieh F-K, Kratkiewicz AJ, Mahpour A, Cancelliere SOL, Zhou C, Cook BM, Li W et al (2020) lncRNA DIGIT and BRD3 protein form phase-separated condensates to regulate endoderm differentiation. Nat Cell Biol 6:26657

    Google Scholar 

  46. Rahnamoun H, Lee J, Sun Z, Lu H, Ramsey KM, Komives EA, Lauberth SM (2018) RNAs interact with BRD4 to promote enhanced chromatin engagement and transcription activation. Nat Struct Mol Biol 25(8):687–697

    Article  CAS  Google Scholar 

  47. Zhou J, Ma J, Zhang BC, Li XL, Shen SR, Zhu SG, Xiong W, Liu HY, Huang H, Zhou M et al (2004) BRD7, a novel bromodomain gene, inhibits G1-S progression by transcriptionally regulating some important molecules involved in ras/MEK/ERK and Rb/E2F pathways. J Cell Physiol 200(1):89–98

    Article  CAS  Google Scholar 

  48. Liu Z, Yan M, Liang Y, Liu M, Zhang K, Shao D, Jiang R, Li L, Wang C, Nussenzveig DR et al (2019) Nucleoporin Seh1 interacts with Olig2/Brd7 to promote oligodendrocyte differentiation and myelination. Neuron 102(3):587-601e587

    Article  CAS  Google Scholar 

  49. Liu T, Zhao M, Liu J, He Z, Zhang Y, You H, Huang J, Lin X, Feng XH (2017) Tumor suppressor bromodomain-containing protein 7 cooperates with Smads to promote transforming growth factor-beta responses. Oncogene 36(3):362–372

    Article  CAS  Google Scholar 

  50. Tan P, Yeoh KG (2015) Genetics and Molecular Pathogenesis of Gastric Adenocarcinoma. Gastroenterology 149(5):1153-1162e1153

    Article  CAS  Google Scholar 

  51. Xie S, Chang Y, Jin H, Yang F, Xu Y, Yan X, Lin A, Shu Q, Zhou T (2020) Non-coding RNAs in gastric cancer. Cancer Lett 493:55–70

    Article  CAS  Google Scholar 

  52. El-Deiry WS (2016) p21(WAF1) mediates cell-cycle inhibition, relevant to cancer suppression and therapy. Cancer Res 76(18):5189–5191

    Article  CAS  Google Scholar 

  53. Powell E, Piwnica-Worms D, Piwnica-Worms H (2014) Contribution of p53 to metastasis. Cancer Discov 4(4):405–414

    Article  CAS  Google Scholar 

  54. Chen HF, Ma RR, He JY, Zhang H, Liu XL, Guo XY, Gao P (2017) Protocadherin 7 inhibits cell migration and invasion through E-cadherin in gastric cancer. Tumour Biol 39(4):1010428317697551

    Article  Google Scholar 

  55. Huarte M, Guttman M, Feldser D, Garber M, Koziol MJ, Kenzelmann-Broz D, Khalil AM, Zuk O, Amit I, Rabani M et al (2010) A large intergenic noncoding RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419

    Article  CAS  Google Scholar 

  56. Hu WL, Jin L, Xu A, Wang YF, Thorne RF, Zhang XD, Wu M (2018) GUARDIN is a p53-responsive long non-coding RNA that is essential for genomic stability. Nat Cell Biol 20(4):492–502

    Article  Google Scholar 

  57. Zhou Y, Zhong Y, Wang Y, Zhang X, Batista DL, Gejman R, Ansell PJ, Zhao J, Weng C, Klibanski A (2007) Activation of p53 by MEG3 non-coding RNA. J Biol Chem 282(34):24731–24742

    Article  CAS  Google Scholar 

  58. Shihabudeen Haider Ali MS, Cheng X, Moran M, Haemmig S, Naldrett MJ, Alvarez S, Feinberg MW, Sun X (2019) LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Res 47(3):1505–1522

    Article  Google Scholar 

  59. Zang ZJ, Cutcutache I, Poon SL, Zhang SL, McPherson JR, Tao J, Rajasegaran V, Heng HL, Deng N, Gan A et al (2012) Exome sequencing of gastric adenocarcinoma identifies recurrent somatic mutations in cell adhesion and chromatin remodeling genes. Nat Genet 44(5):570–574

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant nos. 81871984, 81772831, 82072614), Advanced and Appropriate Technology Promotion Project of Shanghai Health Commission (Grant no. 2019SY030), Shanghai Municipal Key Clinical Specialty (Grant No. shslczdzk00102) and Shanghai Jiao Tong University School of Medicine “Two-hundred Talent” team (Grant no. RC20200026). We are grateful to Prof. Ming He for the discussion, and Dr. Li Xia and his team in the core facility of basic medical science (Shanghai Jiao Tong University School of Medicine) for excellent support in MS.

Funding

This work is supported by the National Natural Science Foundation of China (NSFC) (Grant nos. 81871984, 81772831, 82072614), Advanced and Appropriate Technology Promotion Project of Shanghai Health Commission (Grant no. 2019SY030), Shanghai Municipal Key Clinical Specialty (Grant no. shslczdzk00102) and Shanghai Jiao Tong University School of Medicine “Two-hundred Talent” team (Grant no. RC20200026).

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: LZ, QZ, MZ; methodology: SL, CZ, LH, SZ; acquisition of data (provided animals, acquired, and managed patients): SZ, LH, JM; analysis and interpretation of data (e.g., statistical analysis, biostatistics analysis): XY, YS, HJ, EZ; supervision: MZ, LZ; funding acquisition: LZ, QZ, MZ, JS; writing, review, or revision of the manuscript: SL, QZ, LZ, JS.

Corresponding authors

Correspondence to Minhua Zheng, Qian Zhao or Lu Zang.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Ethics approval and consent to participate

The study protocol was in accordance with the guidelines set by the Ethical Committee of Ruijin Hospital. Written informed consent was obtained from all participants in the study.

Consent for publication

All authors agree with the content of the manuscript.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3863 KB)

Supplementary file2 (XLSX 74 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Sun, J., Ma, J. et al. LncRNA LENGA acts as a tumor suppressor in gastric cancer through BRD7/TP53 signaling. Cell. Mol. Life Sci. 80, 5 (2023). https://doi.org/10.1007/s00018-022-04642-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04642-2

Keywords

Navigation