Skip to main content

Advertisement

Log in

miR-124 regulates early isolation-induced social abnormalities via inhibiting myelinogenesis in the medial prefrontal cortex

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Patients with autism spectrum disorder (ASD) typically experience substantial social isolation, which may cause secondary adverse effects on their brain development. miR-124 is the most abundant miRNA in the human brain, acting as a pivotal molecule regulating neuronal fate determination. Alterations of miR-124 maturation or expression are observed in various neurodevelopmental, neuropsychiatric, and neurodegenerative disorders. In the present study, we analyzed a panel of brain-enriched microRNAs in serums from 2 to 6 year old boys diagnosed with ASD. The hsa-miR-124 level was found significantly elevated in ASD boys than in age and sex-matched healthy controls. In an isolation-reared weanling mouse model, we evidenced elevated mmu-miR-124 level in the serum and the medial prefrontal cortex (mPFC). These mice displayed significant sociability deficits, as well as myelin abnormality in the mPFC, which was partially rescued by expressing the miR-124 sponge in the bilateral mPFC, ubiquitously or specifically in oligodendroglia. In cultured mouse oligodendrocyte precursor cells, introducing a synthetic mmu-miR-124 inhibited the differentiation process through suppressing expression of nuclear receptor subfamily 4 group A member 1 (Nr4a1). Overexpressing Nr4a1 in the bilateral mPFC also corrected the social behavioral deficits and myelin impairments in the isolation-reared mice. This study revealed an unanticipated role of the miR-124/Nr4a1 signaling in regulating early social experience-dependent mPFC myelination, which may serve as a potential therapy target for social neglect or social isolation-related neuropsychiatric disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

All data generated or analyzed during this study are included in this published article and its supplementary information files.

References

  1. Makinodan M, Rosen KM, Ito S, Corfas G (2012) A critical period for social experience-dependent oligodendrocyte maturation and myelination. Science 337(6100):1357–1360. https://doi.org/10.1126/science.1220845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Fone KC, Porkess MV (2008) Behavioural and neurochemical effects of post-weaning social isolation in rodents-relevance to developmental neuropsychiatric disorders. Neurosci Biobehav Rev 32(6):1087–1102. https://doi.org/10.1016/j.neubiorev.2008.03.003

    Article  CAS  PubMed  Google Scholar 

  3. Huang L, Duan C, Xia X, Wang H, Wang Y, Zhong Z, Wang B, Ding W, Yang Y (2021) Commensal microbe-derived propionic acid mediates juvenile social isolation-induced social deficits and anxiety-like behaviors. Brain Res Bull 166:161–171. https://doi.org/10.1016/j.brainresbull.2020.12.001

    Article  CAS  PubMed  Google Scholar 

  4. Zeedyk SM, Cohen SR, Eisenhower A, Blacher J (2016) Perceived social competence and loneliness among young children with ASD: child, parent and teacher reports. J Autism Dev Disord 46(2):436–449. https://doi.org/10.1007/s10803-015-2575-6

    Article  PubMed  Google Scholar 

  5. Hessl D, Dyer-Friedman J, Glaser B, Wisbeck J, Barajas RG, Taylor A, Reiss AL (2001) The influence of environmental and genetic factors on behavior problems and autistic symptoms in boys and girls with fragile X syndrome. Pediatrics 108(5):E88. https://doi.org/10.1542/peds.108.5.e88

    Article  CAS  PubMed  Google Scholar 

  6. Budimirovic DB, Bukelis I, Cox C, Gray RM, Tierney E, Kaufmann WE (2006) Autism spectrum disorder in Fragile X syndrome: differential contribution of adaptive socialization and social withdrawal. Am J Med Genet A 140A(17):1814–1826. https://doi.org/10.1002/ajmg.a.31405

    Article  PubMed  Google Scholar 

  7. Zhang XQ, Jiang HJ, Xu L, Yang SY, Wang GZ, Jiang HD, Wu T, Du H, Yu ZP, Zhao QQ, Ling Y, Zhang ZY, Shen HW (2020) The metabotropic glutamate receptor 2/3 antagonist LY341495 improves working memory in adult mice following juvenile social isolation. Neuropharmacology 177:108231. https://doi.org/10.1016/j.neuropharm.2020.108231

    Article  CAS  PubMed  Google Scholar 

  8. Salihu SA, Ghafari H, Ahmadimanesh M, Gortany NK, Shafaroodi H, Ghazi-Khansari M (2021) Glatiramer acetate attenuates depressive/anxiety-like behaviors and cognitive deficits induced by post-weaning social isolation in male mice. Psychopharmacology 238(8):2121–2132. https://doi.org/10.1007/s00213-021-05836-5

    Article  CAS  PubMed  Google Scholar 

  9. Liu J, Dietz K, Deloyht JM, Pedre X, Kelkar D, Kaur J, Vialou V, Lobo MK, Dietz DM, Nestler EJ, Dupree J, Casaccia P (2012) Impaired adult myelination in the prefrontal cortex of socially isolated mice. Nat Neurosci 15(12):1621–1623. https://doi.org/10.1038/nn.3263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Long P, Corfas G (2014) Dynamic regulation of myelination in health and disease. JAMA Psychiat 71(11):1296–1297. https://doi.org/10.1001/jamapsychiatry.2014.1049

    Article  Google Scholar 

  11. Liu J, Dupree JL, Gacias M, Frawley R, Sikder T, Naik P, Casaccia P (2016) Clemastine enhances myelination in the prefrontal cortex and rescues behavioral changes in socially isolated mice. J Neurosci 36(3):957–962. https://doi.org/10.1523/JNEUROSCI.3608-15.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhao J, Zhou Y, Guo M, Yue D, Chen C, Liang G, Xu L (2020) MicroRNA-7: expression and function in brain physiological and pathological processes. Cell Biosci 10:77. https://doi.org/10.1186/s13578-020-00436-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Nguyen LS, Fregeac J, Bole-Feysot C, Cagnard N, Iyer A, Anink J, Aronica E, Alibeu O, Nitschke P, Colleaux L (2018) Role of miR-146a in neural stem cell differentiation and neural lineage determination: relevance for neurodevelopmental disorders. Mol Autism 9:38. https://doi.org/10.1186/s13229-018-0219-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaccaro TDS, Sorrentino JM, Salvador S, Veit T, Souza DO, de Almeida RF (2018) Alterations in the MicroRNA of the blood of autism spectrum disorder patients: effects on epigenetic regulation and potential biomarkers. Behav Sci (Basel) 8(8):75. https://doi.org/10.3390/bs8080075

    Article  Google Scholar 

  15. Hicks SD, Middleton FA (2016) A comparative review of microrna expression patterns in autism spectrum disorder. Front Psychiatry 7:176. https://doi.org/10.3389/fpsyt.2016.00176

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schopler E, Reichler RJ, DeVellis RF, Daly K (1980) Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). J Autism Dev Disord 10(1):91–103. https://doi.org/10.1007/BF02408436

    Article  CAS  PubMed  Google Scholar 

  17. Leung C, Kim JC, Jia Z (2018) Three-chamber social approach task with optogenetic stimulation (mice). Bio Protoc 8(24):e3120. https://doi.org/10.21769/BioProtoc.3120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Liu WZ, Zhang WH, Zheng ZH, Zou JX, Liu XX, Huang SH, You WJ, He Y, Zhang JY, Wang XD, Pan BX (2020) Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat Commun 11(1):2221. https://doi.org/10.1038/s41467-020-15920-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Sarnyai Z, Sibille EL, Pavlides C, Fenster RJ, McEwen BS, Toth M (2000) Impaired hippocampal-dependent learning and functional abnormalities in the hippocampus in mice lacking serotonin(1A) receptors. Proc Natl Acad Sci USA 97(26):14731–14736. https://doi.org/10.1073/pnas.97.26.14731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xu Z, Xiao N, Chen Y, Huang H, Marshall C, Gao J, Cai Z, Wu T, Hu G, Xiao M (2015) Deletion of aquaporin-4 in APP/PS1 mice exacerbates brain Abeta accumulation and memory deficits. Mol Neurodegener 10:58. https://doi.org/10.1186/s13024-015-0056-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gao J, Wang WY, Mao YW, Graff J, Guan JS, Pan L, Mak G, Kim D, Su SC, Tsai LH (2010) A novel pathway regulates memory and plasticity via SIRT1 and miR-134. Nature 466(7310):1105–1109. https://doi.org/10.1038/nature09271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li H, Okada H, Suzuki S, Sakai K, Izumi H, Matsushima Y, Ichinohe N, Goto YI, Okada T, Inoue K (2019) Gene suppressing therapy for Pelizaeus-Merzbacher disease using artificial microRNA. JCI Insight. https://doi.org/10.1172/jci.insight.125052

    Article  PubMed  PubMed Central  Google Scholar 

  23. Zhang B, Su W, Hu J, Xu J, Askar P, Bao S, Zhou S, Chen G, Gu Y (2022) Transcriptome analysis of schwann cells at various stages of myelination implicates chromatin regulator sin3A in control of myelination identity. Neurosci Bull 38(7):720–740. https://doi.org/10.1007/s12264-022-00850-9

    Article  CAS  PubMed  Google Scholar 

  24. Parfitt GM, Nguyen R, Bang JY, Aqrabawi AJ, Tran MM, Seo DK, Richards BA, Kim JC (2017) Bidirectional control of anxiety-related behaviors in mice: role of inputs arising from the ventral hippocampus to the lateral septum and medial prefrontal cortex. Neuropsychopharmacology 42(8):1715–1728. https://doi.org/10.1038/npp.2017.56

    Article  PubMed  PubMed Central  Google Scholar 

  25. Volpicelli-Daley LA, Luk KC, Lee VM (2014) Addition of exogenous alpha-synuclein preformed fibrils to primary neuronal cultures to seed recruitment of endogenous alpha-synuclein to Lewy body and Lewy neurite-like aggregates. Nat Protoc 9(9):2135–2146. https://doi.org/10.1038/nprot.2014.143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Flores-Obando RE, Freidin MM, Abrams CK (2018) Rapid and specific immunomagnetic isolation of mouse primary oligodendrocytes. J Vis Exp. https://doi.org/10.3791/57543

    Article  PubMed  PubMed Central  Google Scholar 

  27. Xu ZQ, Zhang LQ, Wang Q, Marshall C, Xiao N, Gao JY, Wu T, Ding J, Hu G, Xiao M (2013) Aerobic exercise combined with antioxidative treatment does not counteract moderate- or mid-stage Alzheimer-like pathophysiology of APP/PS1 mice. CNS Neurosci Ther 19(10):795–803. https://doi.org/10.1111/cns.12139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Castejon OJ (1984) Low resolution scanning electron microscopy of cerebellar neurons and neuroglial cells of the granular layer. Scan Electron Microsc (Pt 3):1391–1400

  29. Garcia-Cabezas MA, John YJ, Barbas H, Zikopoulos B (2016) Distinction of neurons, glia and endothelial cells in the cerebral cortex: an algorithm based on cytological features. Front Neuroanat. https://doi.org/10.3389/fnana.2016.00107

    Article  PubMed  PubMed Central  Google Scholar 

  30. Jones DG, Devon RM (1978) An ultrastructural study into the effects of pentobarbitone on synaptic organization. Brain Res 147(1):47–63. https://doi.org/10.1016/0006-8993(78)90771-0

    Article  CAS  PubMed  Google Scholar 

  31. Kress BT, Iliff JJ, Xia M, Wang M, Wei HS, Zeppenfeld D, Xie L, Kang H, Xu Q, Liew JA, Plog BA, Ding F, Deane R, Nedergaard M (2014) Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 76(6):845–861. https://doi.org/10.1002/ana.24271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mori MA, Ludwig RG, Garcia-Martin R, Brandao BB, Kahn CR (2019) Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab 30(4):656–673. https://doi.org/10.1016/j.cmet.2019.07.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lasgaard M, Nielsen A, Eriksen ME, Goossens L (2010) Loneliness and social support in adolescent boys with autism spectrum disorders. J Autism Dev Disord 40(2):218–226. https://doi.org/10.1007/s10803-009-0851-z

    Article  PubMed  Google Scholar 

  34. Huang ZX, Chen Y, Guo HR, Chen GF (2021) Systematic review and bioinformatic analysis of microrna expression in autism spectrum disorder identifies pathways associated with cancer, metabolism, cell signaling, and cell adhesion. Front Psychiatry 12:630876. https://doi.org/10.3389/fpsyt.2021.630876

    Article  PubMed  PubMed Central  Google Scholar 

  35. You YH, Qin ZQ, Zhang HL, Yuan ZH, Yu X (2019) MicroRNA-153 promotes brain-derived neurotrophic factor and hippocampal neuron proliferation to alleviate autism symptoms through inhibition of JAK-STAT pathway by LEPR. Biosci Rep. https://doi.org/10.1042/BSR20181904

  36. de Ronde MWJ, Kok MGM, Moerland PD, Van den Bossche J, Neele AE, Halliani A, van der Made I, de Winther MPJ, Meijers JCM, Creemers EE, Pinto-Sietsma SJ (2017) High miR-124-3p expression identifies smoking individuals susceptible to atherosclerosis. Atherosclerosis 263:377–384. https://doi.org/10.1016/j.atherosclerosis.2017.03.045

    Article  CAS  PubMed  Google Scholar 

  37. Guo X, Zhang Y, Liu L, Yang W, Zhang Q (2020) HNF1A-AS1 regulates cell migration, invasion and glycolysis via modulating miR-124/MYO6 in colorectal cancer cells. Onco Targets Ther 13:1507–1518. https://doi.org/10.2147/OTT.S231249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ghafouri-Fard S, Shoorei H, Bahroudi Z, Abak A, Majidpoor J, Taheri M (2021) An update on the role of miR-124 in the pathogenesis of human disorders. Biomed Pharmacother 135:111198. https://doi.org/10.1016/j.biopha.2020.111198

    Article  CAS  PubMed  Google Scholar 

  39. Peng J, Omran A, Ashhab MU, Kong H, Gan N, He F, Yin F (2013) Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci 50(2):291–297. https://doi.org/10.1007/s12031-013-9953-3

    Article  CAS  PubMed  Google Scholar 

  40. Yang Y, Shu X, Liu D, Shang Y, Wu Y, Pei L, Xu X, Tian Q, Zhang J, Qian K, Wang YX, Petralia RS, Tu W, Zhu LQ, Wang JZ, Lu Y (2012) EPAC null mutation impairs learning and social interactions via aberrant regulation of miR-124 and Zif268 translation. Neuron 73(4):774–788. https://doi.org/10.1016/j.neuron.2012.02.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Gascon E, Lynch K, Ruan H, Almeida S, Verheyden JM, Seeley WW, Dickson DW, Petrucelli L, Sun D, Jiao J, Zhou H, Jakovcevski M, Akbarian S, Yao WD, Gao FB (2014) Alterations in microRNA-124 and AMPA receptors contribute to social behavioral deficits in frontotemporal dementia. Nat Med 20(12):1444–1451. https://doi.org/10.1038/nm.3717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Arrant AE, Roberson ED (2014) MicroRNA-124 modulates social behavior in frontotemporal dementia. Nat Med 20(12):1381–1383. https://doi.org/10.1038/nm.3768

    Article  CAS  PubMed  Google Scholar 

  43. Welberg L (2015) Neurodegenerative disease: a social role for microRNA. Nat Rev Neurosci 16(1):2–3. https://doi.org/10.1038/nrn3884

    Article  CAS  PubMed  Google Scholar 

  44. Graciarena M, Seiffe A, Nait-Oumesmar B, Depino AM (2018) Hypomyelination and oligodendroglial alterations in a mouse model of autism spectrum disorder. Front Cell Neurosci 12:517. https://doi.org/10.3389/fncel.2018.00517

    Article  CAS  PubMed  Google Scholar 

  45. Thompson EH, Lensjo KK, Wigestrand MB, Malthe-Sorenssen A, Hafting T, Fyhn M (2018) Removal of perineuronal nets disrupts recall of a remote fear memory. Proc Natl Acad Sci USA 115(3):607–612. https://doi.org/10.1073/pnas.1713530115

    Article  CAS  PubMed  Google Scholar 

  46. Tenga A, Beard JA, Takwi A, Wang YM, Chen T (2016) Regulation of nuclear receptor Nur77 by miR-124. PLoS ONE 11(2):e0148433. https://doi.org/10.1371/journal.pone.0148433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Chandrasekar V, Dreyer JL (2009) microRNAs miR-124, let-7d and miR-181a regulate cocaine-induced plasticity. Mol Cell Neurosci 42(4):350–362. https://doi.org/10.1016/j.mcn.2009.08.009

    Article  CAS  PubMed  Google Scholar 

  48. Rajasethupathy P, Fiumara F, Sheridan R, Betel D, Puthanveettil SV, Russo JJ, Sander C, Tuschl T, Kandel E (2009) Characterization of small RNAs in Aplysia reveals a role for miR-124 in constraining synaptic plasticity through CREB. Neuron 63(6):803–817. https://doi.org/10.1016/j.neuron.2009.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Farrell BC, Power EM, Mc Dermott KW (2011) Developmentally regulated expression of Sox9 and microRNAs 124, 128 and 23 in neuroepithelial stem cells in the developing spinal cord. Int J Dev Neurosci 29(1):31–36. https://doi.org/10.1016/j.ijdevneu.2010.10.001

    Article  CAS  PubMed  Google Scholar 

  50. Krichevsky AM, Sonntag KC, Isacson O, Kosik KS (2006) Specific microRNAs modulate embryonic stem cell-derived neurogenesis. Stem Cells 24(4):857–864. https://doi.org/10.1634/stemcells.2005-0441

    Article  CAS  PubMed  Google Scholar 

  51. Barak B, Zhang Z, Liu Y, Nir A, Trangle SS, Ennis M, Levandowski KM, Wang D, Quast K, Boulting GL, Li Y, Bayarsaihan D, He Z, Feng G (2019) Neuronal deletion of Gtf2i, associated with Williams syndrome, causes behavioral and myelin alterations rescuable by a remyelinating drug. Nat Neurosci 22(5):700–708. https://doi.org/10.1038/s41593-019-0380-9

    Article  CAS  PubMed  Google Scholar 

  52. Filipello F, Morini R, Corradini I, Zerbi V, Canzi A, Michalski B, Erreni M, Markicevic M, Starvaggi-Cucuzza C, Otero K, Piccio L, Cignarella F, Perrucci F, Tamborini M, Genua M, Rajendran L, Menna E, Vetrano S, Fahnestock M, Paolicelli RC, Matteoli M (2018) The microglial innate immune receptor TREM2 is required for synapse elimination and normal brain connectivity. Immunity 48(5):979-991 e978. https://doi.org/10.1016/j.immuni.2018.04.016

    Article  CAS  PubMed  Google Scholar 

  53. Sy M, Brandt AU, Lee SU, Newton BL, Pawling J, Golzar A, Rahman AMA, Yu Z, Cooper G, Scheel M, Paul F, Dennis JW, Demetriou M (2020) N-acetylglucosamine drives myelination by triggering oligodendrocyte precursor cell differentiation. J Biol Chem 295(51):17413–17424. https://doi.org/10.1074/jbc.RA120.015595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Traiffort E, Zakaria M, Laouarem Y, Ferent J (2016) Hedgehog: a key signaling in the development of the oligodendrocyte lineage. J Dev Biol 4(3):28. https://doi.org/10.3390/jdb4030028

    Article  CAS  PubMed Central  Google Scholar 

  55. Parker V, Morinan A (1986) The socially-isolated rat as a model for anxiety. Neuropharmacology 25(6):663–664. https://doi.org/10.1016/0028-3908(86)90224-8

    Article  Google Scholar 

  56. Mishima T, Mizuguchi Y, Kawahigashi Y, Takizawa T, Takizawa T (2007) RT-PCR-based analysis of microRNA (miR-1 and -124) expression in mouse CNS. Brain Res 1131(1):37–43. https://doi.org/10.1016/j.brainres.2006.11.035

    Article  CAS  PubMed  Google Scholar 

  57. Makeyev EV, Zhang J, Carrasco MA, Maniatis T (2007) The MicroRNA miR-124 promotes neuronal differentiation by triggering brain-specific alternative pre-mRNA splicing. Mol Cell 27(3):435–448. https://doi.org/10.1016/j.molcel.2007.07.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Manakov S, Morton A, Enright A, Grant S (2012) A neuronal transcriptome response involving stress pathways is buffered by neuronal microRNAs [original research]. Front Neurosci. https://doi.org/10.3389/fnins.2012.00156

    Article  PubMed  PubMed Central  Google Scholar 

  59. Svahn AJ, Giacomotto J, Graeber MB, Rinkwitz S, Becker TS (2016) miR-124 Contributes to the functional maturity of microglia. Dev Neurobiol 76(5):507–518. https://doi.org/10.1002/dneu.22328

    Article  CAS  PubMed  Google Scholar 

  60. Uchida S, Hara K, Kobayashi A, Funato H, Hobara T, Otsuki K, Yamagata H, McEwen BS, Watanabe Y (2010) Early life stress enhances behavioral vulnerability to stress through the activation of REST4-mediated gene transcription in the medial prefrontal cortex of rodents. J Neurosci 30(45):15007–15018. https://doi.org/10.1523/JNEUROSCI.1436-10.2010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Morris JK, Chomyk A, Song P, Parker N, Deckard S, Trapp BD, Pimplikar SW, Dutta R (2015) Decrease in levels of the evolutionarily conserved microRNA miR-124 affects oligodendrocyte numbers in Zebrafish. Danio rerio Invert Neurosci 15(3):4. https://doi.org/10.1007/s10158-015-0180-1

    Article  CAS  PubMed  Google Scholar 

  62. Li Z, Yu Y, Kang J, Zheng Y, Xu J, Xu K, Hou K, Hou Y, Chi G (2020) MicroRNA-124 overexpression in schwann cells promotes schwann cell-astrocyte integration and inhibits glial scar formation ability [original research]. Front Cell Neurosci. https://doi.org/10.3389/fncel.2020.00144

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hamashima T, Ishii Y, Nguyen LQ, Okuno N, Sang Y, Matsushima T, Kurashige Y, Takebayashi H, Mori H, Fujimori T, Yamamoto S, Sasahara M (2020) Oligodendrogenesis and myelin formation in the forebrain require platelet-derived growth factor receptor-alpha. Neuroscience 436:11–26. https://doi.org/10.1016/j.neuroscience.2020.04.001

    Article  CAS  PubMed  Google Scholar 

  64. Sil S, Periyasamy P, Thangaraj A, Chivero ET, Buch S (2018) PDGF/PDGFR axis in the neural systems. Mol Aspects Med 62:63–74. https://doi.org/10.1016/j.mam.2018.01.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Milbrandt J (1988) Nerve growth factor induces a gene homologous to the glucocorticoid receptor gene. Neuron 1(3):183–188. https://doi.org/10.1016/0896-6273(88)90138-9

    Article  CAS  PubMed  Google Scholar 

  66. Maxwell MA, Muscat GE (2006) The NR4A subgroup: immediate early response genes with pleiotropic physiological roles. Nucl Recept Signal 4:e002. https://doi.org/10.1621/nrs.04002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maxwell MA, Cleasby ME, Harding A, Stark A, Cooney GJ, Muscat GE (2005) Nur77 regulates lipolysis in skeletal muscle cells. Evidence for cross-talk between the beta-adrenergic and an orphan nuclear hormone receptor pathway. J Biol Chem 280(13):12573–12584. https://doi.org/10.1074/jbc.M409580200

    Article  CAS  PubMed  Google Scholar 

  68. Pei L, Waki H, Vaitheesvaran B, Wilpitz DC, Kurland IJ, Tontonoz P (2006) NR4A orphan nuclear receptors are transcriptional regulators of hepatic glucose metabolism. Nat Med 12(9):1048–1055. https://doi.org/10.1038/nm1471

    Article  CAS  PubMed  Google Scholar 

  69. Hanna RN, Carlin LM, Hubbeling HG, Nackiewicz D, Green AM, Punt JA, Geissmann F, Hedrick CC (2011) The transcription factor NR4A1 (Nur77) controls bone marrow differentiation and the survival of Ly6C- monocytes. Nat Immunol 12(8):778–785. https://doi.org/10.1038/ni.2063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang W, Zhu X, Liu Y, Chen M, Yan S, Mao X, Liu Z, Wu W, Chen C, Xu X, Wang Y (2015) Nur77 was essential for neurite outgrowth and involved in schwann cell differentiation after sciatic nerve injury. J Mol Neurosci 57(1):38–47. https://doi.org/10.1007/s12031-015-0575-9

    Article  CAS  PubMed  Google Scholar 

  71. Silber J, Hashizume R, Felix T, Hariono S, Yu M, Berger MS, Huse JT, VandenBerg SR, James CD, Hodgson JG, Gupta N (2013) Expression of miR-124 inhibits growth of medulloblastoma cells. Neuro Oncol 15(1):83–90. https://doi.org/10.1093/neuonc/nos281

    Article  CAS  PubMed  Google Scholar 

  72. Cho HJ, Zhao J, Jung SW, Ladewig E, Kong DS, Suh YL, Lee Y, Kim D, Ahn SH, Bordyuh M, Kang HJ, Sa JK, Seo YJ, Kim ST, Lim DH, Dho YS, Lee JI, Seol HJ, Choi JW, Park WY, Park CK, Rabadan R, Nam DH (2019) Distinct genomic profile and specific targeted drug responses in adult cerebellar glioblastoma. Neuro Oncol 21(1):47–58. https://doi.org/10.1093/neuonc/noy123

    Article  CAS  PubMed  Google Scholar 

  73. Montarolo F, Martire S, Marnetto F, Valentino P, Valverde S, Capobianco MA, Bertolotto A (2022) The selective agonist for sphingosine-1-phosphate receptors siponimod increases the expression level of NR4A genes in microglia cell line. Curr Issues Mol Biol 44(3):1247–1256. https://doi.org/10.3390/cimb44030083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Volakakis N, Kadkhodaei B, Joodmardi E, Wallis K, Panman L, Silvaggi J, Spiegelman BM, Perlmann T (2010) NR4A orphan nuclear receptors as mediators of CREB-dependent neuroprotection. Proc Natl Acad Sci 107(27):12317–12322. https://doi.org/10.1073/pnas.1007088107

    Article  PubMed  PubMed Central  Google Scholar 

  75. Afshari FS, Chu AK, Sato-Bigbee C (2001) Effect of cyclic AMP on the expression of myelin basic protein species and myelin proteolipid protein in committed oligodendrocytes: Differential involvement of the transcription factor CREB. J Neurosci Res 66(1):37–45. https://doi.org/10.1002/jnr.1195

    Article  CAS  PubMed  Google Scholar 

  76. Shiga H, Yamane Y, Kubo M, Sakurai Y, Asou H, Ito E (2005) Differentiation of immature oligodendrocytes is regulated by phosphorylation of cyclic AMP-response element binding protein by a protein kinase C signaling cascade. J Neurosci Res 80(6):767–776. https://doi.org/10.1002/jnr.20513

    Article  CAS  PubMed  Google Scholar 

  77. Hu Y, Ehli EA, Boomsma DI (2017) MicroRNAs as biomarkers for psychiatric disorders with a focus on autism spectrum disorder: current progress in genetic association studies, expression profiling, and translational research. Autism Res 10(7):1184–1203. https://doi.org/10.1002/aur.1789

    Article  PubMed  Google Scholar 

  78. Wu X, Li W, Zheng Y (2020) Recent progress on relevant microRNAs in autism spectrum disorders. Int J Mol Sci 21(16):5904. https://doi.org/10.3390/ijms21165904

    Article  CAS  PubMed Central  Google Scholar 

  79. Huang F, Long Z, Chen Z, Li J, Hu Z, Qiu R, Zhuang W, Tang B, Xia K, Jiang H (2015) Investigation of gene regulatory networks associated with autism spectrum disorder based on MiRNA expression in China. PLoS ONE 10(6):e0129052. https://doi.org/10.1371/journal.pone.0129052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kichukova TM, Popov NT, Ivanov IS, Vachev TI (2017) Profiling of circulating serum MicroRNAs in children with autism spectrum disorder using stem-loop qRT-PCR assay. Folia Med (Plovdiv) 59(1):43–52. https://doi.org/10.1515/folmed-2017-0009

    Article  CAS  Google Scholar 

  81. Mundalil Vasu M, Anitha A, Thanseem I, Suzuki K, Yamada K, Takahashi T, Wakuda T, Iwata K, Tsujii M, Sugiyama T, Mori N (2014) Serum microRNA profiles in children with autism. Molecular Autism 5(1):40. https://doi.org/10.1186/2040-2392-5-40

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Popov NT, Madjirova NP, Minkov IN, Vachev TI (2012) Micro RNA HSA-486-3P gene expression profiling in the whole blood of patients with autism. Biotechnol Biotechnol Equip 26(6):3385–3388. https://doi.org/10.5504/bbeq.2012.0093

    Article  CAS  Google Scholar 

  83. Roy B, Dunbar M, Shelton RC, Dwivedi Y (2017) Identification of microRNA-124-3p as a putative epigenetic signature of major depressive disorder. Neuropsychopharmacology 42(4):864–875. https://doi.org/10.1038/npp.2016.175

    Article  CAS  PubMed  Google Scholar 

  84. Skelly MJ, Chappell AE, Carter E, Weiner JL (2015) Adolescent social isolation increases anxiety-like behavior and ethanol intake and impairs fear extinction in adulthood: possible role of disrupted noradrenergic signaling. Neuropharmacology 97:149–159. https://doi.org/10.1016/j.neuropharm.2015.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Quan MN, Tian YT, Xu KH, Zhang T, Yang Z (2010) Post weaning social isolation influences spatial cognition, prefrontal cortical synaptic plasticity and hippocampal potassium ion channels in Wistar rats. Neuroscience 169(1):214–222. https://doi.org/10.1016/j.neuroscience.2010.04.048

    Article  CAS  PubMed  Google Scholar 

  86. Cao M, Pu T, Wang L, Marshall C, He H, Hu G, Xiao M (2017) Early enriched physical environment reverses impairments of the hippocampus, but not medial prefrontal cortex, of socially-isolated mice. Brain Behav Immun 64:232–243. https://doi.org/10.1016/j.bbi.2017.04.009

    Article  PubMed  Google Scholar 

  87. Rivera-Irizarry JK, Skelly MJ, Pleil KE (2020) Social isolation stress in adolescence, but not adulthood, produces hypersocial behavior in adult male and female C57BL/6J mice. Front Behav Neurosci 14:129. https://doi.org/10.3389/fnbeh.2020.00129

    Article  PubMed  PubMed Central  Google Scholar 

  88. Doremus-Fitzwater TL, Varlinskaya EI, Spear LP (2009) Social and non-social anxiety in adolescent and adult rats after repeated restraint. Physiol Behav 97(3–4):484–494. https://doi.org/10.1016/j.physbeh.2009.03.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Schneier FR (2003) Social anxiety disorder. BMJ 327(7414):515–516. https://doi.org/10.1136/bmj.327.7414.515

    Article  PubMed  PubMed Central  Google Scholar 

  90. Stein MB, Kean YM (2000) Disability and quality of life in social phobia: epidemiologic findings. Am J Psychiatry 157(10):1606–1613. https://doi.org/10.1176/appi.ajp.157.10.1606

    Article  CAS  PubMed  Google Scholar 

  91. Ko J (2017) Neuroanatomical substrates of rodent social behavior: the medial prefrontal cortex and its projection patterns. Front Neural Circuits 11:41. https://doi.org/10.3389/fncir.2017.00041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Huang WC, Zucca A, Levy J, Page DT (2020) Social behavior is modulated by valence-encoding mPFC-amygdala sub-circuitry. Cell Rep 32(2):107899. https://doi.org/10.1016/j.celrep.2020.107899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Numa C, Nagai H, Taniguchi M, Nagai M, Shinohara R, Furuyashiki T (2019) Social defeat stress-specific increase in c-Fos expression in the extended amygdala in mice: Involvement of dopamine D1 receptor in the medial prefrontal cortex. Sci Rep 9(1):16670. https://doi.org/10.1038/s41598-019-52997-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hanna J, Hossain GS, Kocerha J (2019) The potential for microRNA therapeutics and clinical research [mini review]. Front Genet. https://doi.org/10.3389/fgene.2019.00478

    Article  PubMed  PubMed Central  Google Scholar 

  95. Bonneau E, Neveu B, Kostantin E, Tsongalis GJ, De Guire V (2019) How close are miRNAs from clinical practice? A perspective on the diagnostic and therapeutic market. Ejifcc 30(2):114–127

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Zhang L, Wang Q, Liu W, Liu F, Ji A, Li Y (2018) The orphan nuclear receptor 4A1: a potential new therapeutic target for metabolic diseases. J Diabetes Res 2018:9363461. https://doi.org/10.1155/2018/9363461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Mr. Zhengrong Xia for technical assistance with the EM and Dr. Yongjie Zhang for technical assistance with the OLs culture.

Funding

This work was supported by the grants from by the National Natural Science Foundation of China (81801378 and 81871117).

Author information

Authors and Affiliations

Authors

Contributions

MX, CS and HH designed the experiments. YZ and YP performed most of the experiments and analysis, YZ, YP, WF, YJ, SC, SD, ZW, ZY, LY, TW, PS, GJ, ZY and YZ did the behavioral experiment. The manuscript was written by MX, CS, YZ and CM. All authors discussed results, made Figures, and edited the manuscript.

Corresponding authors

Correspondence to Huang Huang, Chengyu Sheng or Ming Xiao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Consent for publication

All authors consent to the publication of this study.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Pang, Y., Feng, W. et al. miR-124 regulates early isolation-induced social abnormalities via inhibiting myelinogenesis in the medial prefrontal cortex. Cell. Mol. Life Sci. 79, 507 (2022). https://doi.org/10.1007/s00018-022-04533-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04533-6

Keywords

Navigation