Skip to main content

Advertisement

Log in

Fibrillin-1-regulated miR-122 has a critical role in thoracic aortic aneurysm formation

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Thoracic aortic aneurysms (TAA) in Marfan syndrome, caused by fibrillin-1 mutations, are characterized by elevated cytokines and fragmentated elastic laminae in the aortic wall. This study explored whether and how specific fibrillin-1-regulated miRNAs mediate inflammatory cytokine expression and elastic laminae degradation in TAA. miRNA expression profiling at early and late TAA stages using a severe Marfan mouse model (Fbn1mgR/mgR) revealed a spectrum of differentially regulated miRNAs. Bioinformatic analyses predicted the involvement of these miRNAs in inflammatory and extracellular matrix-related pathways. We demonstrate that upregulation of pro-inflammatory cytokines and matrix metalloproteinases is a common characteristic of mouse and human TAA tissues. miR-122, the most downregulated miRNA in the aortae of 10-week-old Fbn1mgR/mgR mice, post-transcriptionally upregulated CCL2, IL-1β and MMP12. Similar data were obtained at 70 weeks of age using Fbn1C1041G/+ mice. Deficient fibrillin-1–smooth muscle cell interaction suppressed miR-122 levels. The marker for tissue hypoxia HIF-1α was upregulated in the aortic wall of Fbn1mgR/mgR mice, and miR-122 was reduced under hypoxic conditions in cell and organ cultures. Reduced miR-122 was partially rescued by HIF-1α inhibitors, digoxin and 2-methoxyestradiol in aortic smooth muscle cells. Digoxin-treated Fbn1mgR/mgR mice demonstrated elevated miR-122 and suppressed CCL2 and MMP12 levels in the ascending aortae, with reduced elastin fragmentation and aortic dilation. In summary, this study demonstrates that miR-122 in the aortic wall inhibits inflammatory responses and matrix remodeling, which is suppressed by deficient fibrillin-1–cell interaction and hypoxia in TAA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

The microarray data have been deposited in the NCBI's Gene Expression Omnibus database https://www.ncbi.nlm.nih.gov/geo and are accessible through GEO Series accession number GSE199285. All other data sets of this study will be made available upon request to the corresponding author.

Abbreviations

AAA:

Abdominal aortic aneurysm

DMSO:

Dimethyl sulfoxide

ECM:

Extracellular matrix

FAK:

Focal adhesion kinase

FBS:

Fetal bovine serum

GSEA:

Gene set enrichment analyses

HIF-1α:

Hypoxia-inducible factor 1α

MFS:

Marfan syndrome

miRNA:

MicroRNA

MMP:

Matrix metalloproteinase

PBS:

Phosphate-buffered saline

PSG:

Penicillin–streptomycin–glutamine

TAA:

Thoracic aortic aneurysm

TGF-β:

Transforming growth factor β

αSMA:

α-Smooth muscle actin

References

  1. Milewicz DM, Ramirez F (2019) Therapies for thoracic aortic aneurysms and acute aortic dissections. Arterioscler Thromb Vasc Biol 39(2):126–136. https://doi.org/10.1161/ATVBAHA.118.310956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Pinard A, Jones GT, Milewicz DM (2019) Genetics of thoracic and abdominal aortic diseases. Circ Res 124(4):588–606

    Article  CAS  Google Scholar 

  3. Dietz HC, Cutting GR, Pyeritz RE, Maslen CL, Sakai LY, Corson GM, Puffenberger EG, Hamosh A, Nanthakumar EJ, Curristin SM, Stetten G, Meyers DA, Francomano CA (1991) Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352:337–339. https://doi.org/10.1038/352337a0

    Article  CAS  PubMed  Google Scholar 

  4. Milewicz DM, Braverman AC, De Backer J, Morris SA, Boileau C, Maumenee IH, Jondeau G, Evangelista A, Pyeritz RE, European Reference Network for Rare Multisystemic Vascular Disease HRDWG (2021) Marfan syndrome. Nat Rev Dis Primers 7(1):64. https://doi.org/10.1038/s41572-021-00298-7

    Article  PubMed  Google Scholar 

  5. Collod-Beroud G, Le Bourdelles S, Ades L, Ala-Kokko L, Booms P, Boxer M, Child A, Comeglio P, De Paepe A, Hyland JC, Holman K, Kaitila I, Loeys B, Matyas G, Nuytinck L, Peltonen L, Rantamaki T, Robinson P, Steinmann B, Junien C, Beroud C, Boileau C (2003) Update of the UMD-FBN1 mutation database and creation of an FBN1 polymorphism database. Hum Mutat 22(3):199–208. https://doi.org/10.1002/humu.10249

    Article  CAS  PubMed  Google Scholar 

  6. Pyeritz R, Dietz H (2002) Marfan syndrome and other microfibrillar disorders. In: Royce PM, Steinmann B (eds) Connective tissue and its heritable disorders, vol 2. Wiley-Liss Inc, New York, pp 585–626

    Chapter  Google Scholar 

  7. Davis EC (1993) Smooth muscle cell to elastic lamina connections in developing mouse aorta. Lab Invest 68:89–99

    CAS  PubMed  Google Scholar 

  8. Milewicz DM, Trybus KM, Guo DC, Sweeney HL, Regalado E, Kamm K, Stull JT (2017) Altered smooth muscle cell force generation as a driver of thoracic aortic aneurysms and dissections. Arterioscler Thromb Vasc Biol 37(1):26–34. https://doi.org/10.1161/ATVBAHA.116.303229

    Article  CAS  PubMed  Google Scholar 

  9. Khau Van Kien P, Mathieu F, Zhu L, Lalande A, Betard C, Lathrop M, Brunotte F, Wolf JE, Jeunemaitre X (2005) Mapping of familial thoracic aortic aneurysm/dissection with patent ductus arteriosus to 16p12.2-p13.13. Circulation 112(2):200–206

    Article  Google Scholar 

  10. Guo DC, Pannu H, Tran-Fadulu V, Papke CL, Yu RK, Avidan N, Bourgeois S, Estrera AL, Safi HJ, Sparks E, Amor D, Ades L, McConnell V, Willoughby CE, Abuelo D, Willing M, Lewis RA, Kim DH, Scherer S, Tung PP, Ahn C, Buja LM, Raman CS, Shete SS, Milewicz DM (2007) Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat Genet 39(12):1488–1493

    Article  CAS  Google Scholar 

  11. Li Y, Gao S, Han Y, Song L, Kong Y, Jiao Y, Huang S, Du J, Li Y (2021) Variants of focal adhesion scaffold genes cause thoracic aortic aneurysm. Circ Res 128(1):8–23. https://doi.org/10.1161/CIRCRESAHA.120.317361

    Article  CAS  PubMed  Google Scholar 

  12. Neptune ER, Frischmeyer PA, Arking DE, Myers L, Bunton TE, Gayraud B, Ramirez F, Sakai LY, Dietz HC (2003) Dysregulation of TGF-beta activation contributes to pathogenesis in Marfan syndrome. Nat Genet 33(3):407–411. https://doi.org/10.1038/ng1116

    Article  CAS  PubMed  Google Scholar 

  13. Holm TM, Habashi JP, Doyle JJ, Bedja D, Chen Y, van Erp C, Lindsay ME, Kim D, Schoenhoff F, Cohn RD, Loeys BL, Thomas CJ, Patnaik S, Marugan JJ, Judge DP, Dietz HC (2011) Noncanonical TGFbeta signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332(6027):358–361. https://doi.org/10.1126/science.1192149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. He R, Guo DC, Estrera AL, Safi HJ, Huynh TT, Yin Z, Cao SN, Lin J, Kurian T, Buja LM, Geng YJ, Milewicz DM (2006) Characterization of the inflammatory and apoptotic cells in the aortas of patients with ascending thoracic aortic aneurysms and dissections. J Thorac Cardiovasc Surg 131(3):671–678

    Article  Google Scholar 

  15. Pereira L, Lee SY, Gayraud B, Andrikopoulos K, Shapiro SD, Bunton T, Biery NJ, Dietz HC, Sakai LY, Ramirez F (1999) Pathogenetic sequence for aneurysm revealed in mice underexpressing fibrillin-1. Proc Natl Acad Sci USA 96(7):3819–3823

    Article  CAS  Google Scholar 

  16. Judge DP, Biery NJ, Keene DR, Geubtner J, Myers L, Huso DL, Sakai LY, Dietz HC (2004) Evidence for a critical contribution of haploinsufficiency in the complex pathogenesis of Marfan syndrome. J Clin Invest 114(2):172–181

    Article  CAS  Google Scholar 

  17. Ju X, Ijaz T, Sun H, Lejeune W, Vargas G, Shilagard T, Recinos AR, Milewicz DM, Brasier AR, Tilton RG (2014) IL-6 regulates extracellular matrix remodeling associated with aortic dilation in a fibrillin-1 hypomorphic mgR/mgR mouse model of severe Marfan syndrome. J Am Heart Assoc. https://doi.org/10.1161/JAHA.113.000476

    Article  PubMed  PubMed Central  Google Scholar 

  18. Johnston WF, Salmon M, Pope NH, Meher A, Su G, Stone ML, Lu G, Owens GK, Upchurch GR Jr, Ailawadi G (2014) Inhibition of interleukin-1beta decreases aneurysm formation and progression in a novel model of thoracic aortic aneurysms. Circulation 130(11 Suppl 1):S51–S59. https://doi.org/10.1161/CIRCULATIONAHA.113.006800

    Article  PubMed  PubMed Central  Google Scholar 

  19. Alexander MR, Murgai M, Moehle CW, Owens GK (2012) Interleukin-1beta modulates smooth muscle cell phenotype to a distinct inflammatory state relative to PDGF-DD via NF-kappaB-dependent mechanisms. Physiol Genomics 44(7):417–429. https://doi.org/10.1152/physiolgenomics.00160.2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Nataatmadja M, West M, West J, Summers K, Walker P, Nagata M, Watanabe T (2003) Abnormal extracellular matrix protein transport associated with increased apoptosis of vascular smooth muscle cells in marfan syndrome and bicuspid aortic valve thoracic aortic aneurysm. Circulation 108(Suppl 1):II329–II334

    PubMed  Google Scholar 

  21. Xiong W, Meisinger T, Knispel R, Worth JM, Baxter BT (2012) MMP-2 regulates Erk1/2 phosphorylation and aortic dilatation in Marfan syndrome. Circ Res 110(12):e92–e101

    Article  CAS  Google Scholar 

  22. Bunton TE, Biery NJ, Myers L, Gayraud B, Ramirez F, Dietz HC (2001) Phenotypic alteration of vascular smooth muscle cells precedes elastolysis in a mouse model of Marfan syndrome. Circ Res 88(1):37–43

    Article  CAS  Google Scholar 

  23. Jimenez-Altayo F, Meirelles T, Crosas-Molist E, Sorolla MA, Del Blanco DG, Lopez-Luque J, Mas-Stachurska A, Siegert AM, Bonorino F, Barbera L, Garcia C, Condom E, Sitges M, Rodriguez-Pascual F, Laurindo F, Schroder K, Ros J, Fabregat I, Egea G (2018) Redox stress in Marfan syndrome: dissecting the role of the NADPH oxidase NOX4 in aortic aneurysm. Free Radic Biol Med 118:44–58. https://doi.org/10.1016/j.freeradbiomed.2018.02.023

    Article  CAS  PubMed  Google Scholar 

  24. Kaelin WG Jr (2005) ROS: really involved in oxygen sensing. Cell Metab 1(6):357–358

    Article  CAS  Google Scholar 

  25. Semenza GL (2012) Hypoxia-inducible factors in physiology and medicine. Cell 148(3):399–408. https://doi.org/10.1016/j.cell.2012.01.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Liu K, Fang C, Shen Y, Liu Z, Zhang M, Ma B, Pang X (2017) Hypoxia-inducible factor 1a induces phenotype switch of human aortic vascular smooth muscle cell through PI3K/AKT/AEG-1 signaling. Oncotarget 8(20):33343–33352. https://doi.org/10.18632/oncotarget.16448

    Article  PubMed  PubMed Central  Google Scholar 

  27. Wang W, Xu B, Xuan H, Ge Y, Wang Y, Wang L, Huang J, Fu W, Michie SA, Dalman RL (2018) Hypoxia-inducible factor 1 in clinical and experimental aortic aneurysm disease. J Vasc Surg 68(5):1538-1550 e1532. https://doi.org/10.1016/j.jvs.2017.09.030

    Article  PubMed  Google Scholar 

  28. Tsai SH, Huang PH, Hsu YJ, Peng YJ, Lee CH, Wang JC, Chen JW, Lin SJ (2016) Inhibition of hypoxia inducible factor-1alpha attenuates abdominal aortic aneurysm progression through the down-regulation of matrix metalloproteinases. Sci Rep 6:28612. https://doi.org/10.1038/srep28612

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Li J, Kim SG, Blenis J (2014) Rapamycin: one drug, many effects. Cell Metab 19(3):373–379. https://doi.org/10.1016/j.cmet.2014.01.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liu M, Li L, Zhu J, He C, Xu Q, Sun A, Kong W, Li W, Zhang X (2019) Rapamycin attenuates a murine model of thoracic aortic aneurysm by downregulating the miR-126-3p mediated activation of MAPK/ERK signalling pathway. Biochem Biophys Res Commun 512(3):498–504. https://doi.org/10.1016/j.bbrc.2019.03.083

    Article  CAS  PubMed  Google Scholar 

  31. Lawrence DM, Singh RS, Franklin DP, Carey DJ, Elmore JR (2004) Rapamycin suppresses experimental aortic aneurysm growth. J Vasc Surg 40(2):334–338. https://doi.org/10.1016/j.jvs.2004.05.020

    Article  PubMed  Google Scholar 

  32. Imanishi M, Chiba Y, Tomita N, Matsunaga S, Nakagawa T, Ueno M, Yamamoto K, Tamaki T, Tomita S (2016) Hypoxia-inducible factor-1 alpha in smooth muscle cells protects against aortic aneurysms. Arterioscler Thromb Vasc Biol 36(11):2158–2162

    Article  CAS  Google Scholar 

  33. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  34. Merk DR, Chin JT, Dake BA, Maegdefessel L, Miller MO, Kimura N, Tsao PS, Iosef C, Berry GJ, Mohr FW, Spin JM, Alvira CM, Robbins RC, Fischbein MP (2012) miR-29b participates in early aneurysm development in Marfan syndrome. Circ Res 110(2):312–324. https://doi.org/10.1161/circresaha.111.253740

    Article  CAS  PubMed  Google Scholar 

  35. Maegdefessel L, Azuma J, Toh R, Merk DR, Deng A, Chin JT, Raaz U, Schoelmerich AM, Raiesdana A, Leeper NJ, McConnell MV, Dalman RL, Spin JM, Tsao PS (2012) Inhibition of microRNA-29b reduces murine abdominal aortic aneurysm development. J Clin Invest 122(2):497–506

    Article  CAS  Google Scholar 

  36. Maegdefessel L, Azuma J, Toh R, Deng A, Merk DR, Raiesdana A, Leeper NJ, Raaz U, Schoelmerich AM, McConnell MV, Dalman RL, Spin JM, Tsao PS (2012) MicroRNA-21 blocks abdominal aortic aneurysm development and nicotine-augmented expansion. Sci Transl Med 4(122):122ra122. https://doi.org/10.1126/scitranslmed.3003441

    Article  CAS  Google Scholar 

  37. Maegdefessel L, Spin JM, Raaz U, Eken SM, Toh R, Azuma J, Adam M, Nakagami F, Heymann HM, Chernogubova E, Jin H, Roy J, Hultgren R, Caidahl K, Schrepfer S, Hamsten A, Eriksson P, McConnell MV, Dalman RL, Tsao PS (2014) miR-24 limits aortic vascular inflammation and murine abdominal aneurysm development. Nat Commun 5:5214. https://doi.org/10.1038/ncomms6214

    Article  CAS  PubMed  Google Scholar 

  38. Zhang RM, Zeyer KA, Odenthal N, Zhang Y, Reinhardt DP (2021) The fibrillin-1 RGD motif posttranscriptionally regulates ERK1/2 signaling and fibroblast proliferation via miR-1208. FASEB J 35(5):e21598. https://doi.org/10.1096/fj.202100282R

    Article  CAS  PubMed  Google Scholar 

  39. Zeyer KA, Zhang RM, Kumra H, Hassan A, Reinhardt DP (2019) The fibrillin-1 RGD integrin binding site regulates gene expression and cell function through microRNAs. J Mol Biol 431(2):401–421. https://doi.org/10.1016/j.jmb.2018.11.021

    Article  CAS  PubMed  Google Scholar 

  40. Eichhorn SW, Guo H, McGeary SE, Rodriguez-Mias RA, Shin C, Baek D, Hsu SH, Ghoshal K, Villen J, Bartel DP (2014) mRNA destabilization is the dominant effect of mammalian microRNAs by the time substantial repression ensues. Mol Cell 56(1):104–115. https://doi.org/10.1016/j.molcel.2014.08.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, Vlachos IS, Tastsoglou S, Kanellos I, Papadimitriou D, Kavakiotis I, Maniou S, Skoufos G, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2018) DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA-gene interactions. Nucleic Acids Res 46(D1):D239–D245. https://doi.org/10.1093/nar/gkx1141

    Article  CAS  PubMed  Google Scholar 

  42. Dean RA, Cox JH, Bellac CL, Doucet A, Starr AE, Overall CM (2008) Macrophage-specific metalloelastase (MMP-12) truncates and inactivates ELR+ CXC chemokines and generates CCL2, -7, -8, and -13 antagonists: potential role of the macrophage in terminating polymorphonuclear leukocyte influx. Blood 112(8):3455–3464. https://doi.org/10.1182/blood-2007-12-129080

    Article  CAS  PubMed  Google Scholar 

  43. Arias-Salgado EG, Lizano S, Sarkar S, Brugge JS, Ginsberg MH, Shattil SJ (2003) Src kinase activation by direct interaction with the integrin beta cytoplasmic domain. Proc Natl Acad Sci USA 100(23):13298–13302

    Article  CAS  Google Scholar 

  44. Oller J, Gabande-Rodriguez E, Ruiz-Rodriguez MJ, Desdin-Mico G, Aranda JF, Rodrigues-Diez R, Ballesteros-Martinez C, Blanco EM, Roldan-Montero R, Acuna P, Forteza Gil A, Martin-Lopez CE, Nistal JF, Lino Cardenas CL, Lindsay ME, Martin-Ventura JL, Briones AM, Redondo JM, Mittelbrunn M (2021) Extracellular tuning of mitochondrial respiration leads to aortic aneurysm. Circulation 143(21):2091–2109. https://doi.org/10.1161/CIRCULATIONAHA.120.051171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Chance B (1965) Reaction of oxygen with the respiratory chain in cells and tissues. J Gen Physiol 49(1 Suppl):163–195

    Article  CAS  Google Scholar 

  46. Goda N, Kanai M (2012) Hypoxia-inducible factors and their roles in energy metabolism. Int J Hematol 95(5):457–463. https://doi.org/10.1007/s12185-012-1069-y

    Article  CAS  PubMed  Google Scholar 

  47. Kroner BL, Tolunay HE, Basson CT, Pyeritz RE, Holmes KW, Maslen CL, Milewicz DM, LeMaire SA, Hendershot T, Desvigne-Nickens P, Devereux RB, Dietz HC, Song HK, Ringer D, Mitchell M, Weinsaft JW, Ravekes W, Menashe V, Eagle KA (2011) The National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC): results from phase I and scientific opportunities in phase II. Am Heart J 162(4):627-632 e621. https://doi.org/10.1016/j.ahj.2011.07.002

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cook JR, Clayton NP, Carta L, Galatioto J, Chiu E, Smaldone S, Nelson CA, Cheng SH, Wentworth BM, Ramirez F (2015) Dimorphic effects of transforming growth factor-beta signaling during aortic aneurysm progression in mice suggest a combinatorial therapy for Marfan syndrome. Arterioscler Thromb Vasc Biol 35(4):911–917. https://doi.org/10.1161/ATVBAHA.114.305150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nathan C, Sporn M (1991) Cytokines in context. J Cell Biol 113(5):981–986. https://doi.org/10.1083/jcb.113.5.981

    Article  CAS  PubMed  Google Scholar 

  50. Xiong W, Knispel RA, Dietz HC, Ramirez F, Baxter BT (2008) Doxycycline delays aneurysm rupture in a mouse model of Marfan syndrome. J Vasc Surg 47(1):166–172

    Article  Google Scholar 

  51. Ikonomidis JS, Jones JA, Barbour JR, Stroud RE, Clark LL, Kaplan BS, Zeeshan A, Bavaria JE, Gorman JH, Spinale FG, Gorman RC (2006) Expression of matrix metalloproteinases and endogenous inhibitors within ascending aortic aneurysms of patients with Marfan syndrome. Circulation 114:I365–I370. https://doi.org/10.1161/circulationaha.105.000810

    Article  PubMed  Google Scholar 

  52. Proietta M, Tritapepe L, Cifani N, Ferri L, Taurino M, Del Porto F (2014) MMP-12 as a new marker of Stanford-A acute aortic dissection. Ann Med 46(1):44–48. https://doi.org/10.3109/07853890.2013.876728

    Article  CAS  PubMed  Google Scholar 

  53. Wu L, Tanimoto A, Murata Y, Sasaguri T, Fan J, Sasaguri Y, Watanabe T (2003) Matrix metalloproteinase-12 gene expression in human vascular smooth muscle cells. Genes Cells 8(3):225–234

    Article  CAS  Google Scholar 

  54. Curci JA, Liao S, Huffman MD, Shapiro SD, Thompson RW (1998) Expression and localization of macrophage elastase (matrix metalloproteinase-12) in abdominal aortic aneurysms. J Clin Invest 102(11):1900–1910

    Article  CAS  Google Scholar 

  55. Wen J, Friedman JR (2012) miR-122 regulates hepatic lipid metabolism and tumor suppression. J Clin Invest 122(8):2773–2776. https://doi.org/10.1172/JCI63966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Tsai WC, Hsu SD, Hsu CS, Lai TC, Chen SJ, Shen R, Huang Y, Chen HC, Lee CH, Tsai TF, Hsu MT, Wu JC, Huang HD, Shiao MS, Hsiao M, Tsou AP (2012) MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 122(8):2884–2897. https://doi.org/10.1172/JCI63455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  Google Scholar 

  58. Yang CQ, Li W, Li SQ, Li J, Li YW, Kong SX, Liu RM, Wang SM, Lv WM (2014) MCP-1 stimulates MMP-9 expression via ERK 1/2 and p38 MAPK signaling pathways in human aortic smooth muscle cells. Cell Physiol Biochem 34(2):266–276. https://doi.org/10.1159/000362997

    Article  CAS  PubMed  Google Scholar 

  59. Galis ZS, Muszynski M, Sukhova GK, Simon-Morrissey E, Unemori EN, Lark MW, Amento E, Libby P (1994) Cytokine-stimulated human vascular smooth muscle cells synthesize a complement of enzymes required for extracellular matrix digestion. Circ Res 75(1):181–189

    Article  CAS  Google Scholar 

  60. Pfaff M, Reinhardt DP, Sakai LY, Timpl R (1996) Cell adhesion and integrin binding to recombinant human fibrillin-1. FEBS Lett 384:247–250

    Article  CAS  Google Scholar 

  61. Sakamoto H, Broekelmann T, Cheresh DA, Ramirez F, Rosenbloom J, Mecham RP (1996) Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem 271:4916–4922

    Article  CAS  Google Scholar 

  62. Hebert C, Norris K, Scheper MA, Nikitakis N, Sauk JJ (2007) High mobility group A2 is a target for miRNA-98 in head and neck squamous cell carcinoma. Mol Cancer 6:5. https://doi.org/10.1186/1476-4598-6-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Liang W, Guo J, Li J, Bai C, Dong Y (2016) Downregulation of miR-122 attenuates hypoxia/reoxygenation (H/R)-induced myocardial cell apoptosis by upregulating GATA-4. Biochem Biophys Res Commun 478(3):1416–1422. https://doi.org/10.1016/j.bbrc.2016.08.139

    Article  CAS  PubMed  Google Scholar 

  64. Wei Z, Wang Y, Zhang K, Liao Y, Ye P, Wu J, Wang Y, Li F, Yao Y, Zhou Y, Liu J (2014) Inhibiting the Th17/IL-17A-related inflammatory responses with digoxin confers protection against experimental abdominal aortic aneurysm. Arterioscler Thromb Vasc Biol 34(11):2429–2438. https://doi.org/10.1161/atvbaha.114.304435

    Article  CAS  PubMed  Google Scholar 

  65. Sakalihasan N, Michel JB, Katsargyris A, Kuivaniemi H, Defraigne JO, Nchimi A, Powell JT, Yoshimura K, Hultgren R (2018) Abdominal aortic aneurysms. Nat Rev Dis Primers 4(1):34. https://doi.org/10.1038/s41572-018-0030-7

    Article  PubMed  Google Scholar 

  66. Cikach FS, Koch CD, Mead TJ, Galatioto J, Willard BB, Emerton KB, Eagleton MJ, Blackstone EH, Ramirez F, Roselli EE, Apte SS (2018) Massive aggrecan and versican accumulation in thoracic aortic aneurysm and dissection. JCI Insight. https://doi.org/10.1172/jci.insight.97167

    Article  PubMed  PubMed Central  Google Scholar 

  67. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, Paulovich A, Pomeroy SL, Golub TR, Lander ES, Mesirov JP (2005) Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc Natl Acad Sci USA 102(43):15545–15550

    Article  CAS  Google Scholar 

  68. Vlachos IS, Zagganas K, Paraskevopoulou MD, Georgakilas G, Karagkouni D, Vergoulis T, Dalamagas T, Hatzigeorgiou AG (2015) DIANA-miRPath v3.0: deciphering microRNA function with experimental support. Nucleic Acids Res 43(W1):W460–W466. https://doi.org/10.1093/nar/gkv403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG (2013) DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41(Web Server issue):W169–W173. https://doi.org/10.1093/nar/gkt393

    Article  PubMed  PubMed Central  Google Scholar 

  70. Zhang RM, Kumra H, Reinhardt DP (2019) Quantification of extracellular matrix fiber systems related to ADAMTS proteins. Methods Mol Biol 2043:237–250. https://doi.org/10.1007/978-1-4939-9698-8_19

    Article  CAS  Google Scholar 

  71. Shi Y, Jones W, Beatty W, Tan Q, Mecham RP, Kumra H, Reinhardt DP, Gibson MA, Reilly MA, Rodriguez J, Bassnett S (2021) Latent-transforming growth factor beta-binding protein-2 (LTBP-2) is required for longevity but not for development of zonular fibers. Matrix Biol 95:15–31. https://doi.org/10.1016/j.matbio.2020.10.002

    Article  CAS  PubMed  Google Scholar 

  72. Kumra H, Nelea V, Hakami H, Pagliuzza A, Djokic J, Xu J, Yanagisawa H, Reinhardt DP (2019) Fibulin-4 exerts a dual role in LTBP-4L-mediated matrix assembly and function. Proc Natl Acad Sci USA 116(41):20428–20437. https://doi.org/10.1073/pnas.1901048116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Dagher M, Kleinman M, Ng A, Juncker D (2018) Ensemble multicolour FRET model enables barcoding at extreme FRET levels. Nat Nanotechnol 13(10):925–932. https://doi.org/10.1038/s41565-018-0205-0

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Francesco Ramirez in the Department of Pharmacological Sciences, Icahn School of Medicine at Mt Sinai for generously providing Fbn1mgR/+ mice. We are grateful to Dr. Jean-Martin Laberge at the Montreal Children’s Hospital for enabling fibroblast collections from donors. We also thank Dr. Anie Philip for providing primary fibroblast controls, and Dr. Ling Li for help with tissue preparations.

Funding

This work was supported by the Canadian Institutes of Health Research (PJT-162099), the Marfan Foundation (USA), The Natural Sciences and Engineering Research Council of Canada (RGPIN-06278), the Genetic Aortic Disorders Association Canada, and the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Contributions

Study conception and design: RMZ, DPR. Acquisition of data: RMZ, KT, BR, MLM, SK. Analysis and interpretation of data: RMZ, DPR. Manuscript writing: RMZ, DPR. Manuscript editing: KT, BR, SK, MLM, NEHD.

Corresponding author

Correspondence to Dieter P. Reinhardt.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 3562 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, RM., Tiedemann, K., Muthu, M.L. et al. Fibrillin-1-regulated miR-122 has a critical role in thoracic aortic aneurysm formation. Cell. Mol. Life Sci. 79, 314 (2022). https://doi.org/10.1007/s00018-022-04337-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04337-8

Keywords

Navigation