Skip to main content

Advertisement

Log in

Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Background and aims

Recent evidences highlight a role of the mitochondria calcium homeostasis in the development of colorectal cancer (CRC). To overcome treatment resistance, we aimed to evaluate the role of the mitochondrial sodium-calcium–lithium exchanger (NCLX) and its targeting in CRC. We also identified curcumin as a new inhibitor of NCLX.

Methods

We examined whether curcumin and pharmacological compounds induced the inhibition of NCLX-mediated mitochondrial calcium (mtCa2+) extrusion, the role of redox metabolism in this process. We evaluated their anti-tumorigenic activity in vitro and in a xenograft mouse model. We analyzed NCLX expression and associations with survival in The Cancer Genome Atlas (TCGA) dataset and in tissue microarrays from 381 patients with microsatellite instability (MSI)-driven CRC.

Results

In vitro, curcumin exerted strong anti-tumoral activity through its action on NCLX with mtCa2+ and reactive oxygen species overload associated with a mitochondrial membrane depolarization, leading to reduced ATP production and apoptosis. NCLX inhibition with pharmacological and molecular approaches reproduced the effects of curcumin. NCLX inhibitors decreased CRC tumor growth in vivo. Both transcriptomic analysis of TCGA dataset and immunohistochemical analysis of tissue microarrays demonstrated that higher NCLX expression was associated with MSI status, and for the first time, NCLX expression was significantly associated with recurrence-free survival.

Conclusions

Our findings highlight a novel anti-tumoral mechanism of curcumin through its action on NCLX and mitochondria calcium overload that could benefit for therapeutic schedule of patients with MSI CRC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of data and materials

Data will be made available on reasonable request.

References

  1. Evrard C, Tachon G, Randrian V, Karayan-Tapon L, Tougeron D (2019) Microsatellite instability: diagnosis, heterogeneity, discordance, and clinical impact in colorectal cancer. Cancers (Basel) 11(10):1567

    Article  CAS  Google Scholar 

  2. Jo W-S, Carethers JM (2006) Chemotherapeutic implications in microsatellite unstable colorectal cancer. Cancer Biomark 2(1–2):51–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tougeron D et al (2015) Predictors of disease-free survival in colorectal cancer with microsatellite instability: an AGEO multicentre study. Eur J Cancer 51(8):925–934

    Article  CAS  PubMed  Google Scholar 

  4. Tougeron D et al (2020) Prognosis and chemosensitivity of deficient MMR phenotype in patients with metastatic colorectal cancer: an AGEO retrospective multicenter study. Int J Cancer 147(1):285–296

    Article  CAS  PubMed  Google Scholar 

  5. Allegra A, Innao V, Russo S, Gerace D, Alonci A, Musolino C (2017) Anticancer activity of curcumin and its analogues: preclinical and clinical studies. Cancer Invest 35(1):1–22

    Article  CAS  PubMed  Google Scholar 

  6. Ruiz de Porras V, Layos L, Martínez-Balibrea E (2020) Curcumin: a therapeutic strategy for colorectal cancer? Semin Cancer Biol 73:321–330

    Article  PubMed  CAS  Google Scholar 

  7. Katona BW, Weiss JM (2020) Chemoprevention of colorectal cancer. Gastroenterology 158(2):368–388

    Article  CAS  PubMed  Google Scholar 

  8. Jiang Z, Jin S, Yalowich JC, Brown KD, Rajasekaran B (2010) The mismatch repair system modulates curcumin sensitivity through induction of DNA strand breaks and activation of G 2 M checkpoint. Mol Cancer Ther 9(3):558–568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Giordano A, Tommonaro G (2019) Curcumin and cancer. Nutrients 11(10):2376

    Article  CAS  PubMed Central  Google Scholar 

  10. Yao Q et al (2015) Curcumin induces the apoptosis of A549 cells via oxidative stress and MAPK signaling pathways. Int J Mol Med 36(4):1118–1126

    Article  PubMed  CAS  Google Scholar 

  11. Morin D, Barthélémy S, Zini R, Labidalle S, Tillement J-P (2001) Curcumin induces the mitochondrial permeability transition pore mediated by membrane protein thiol oxidation. FEBS Lett 495(1–2):131–136

    Article  CAS  PubMed  Google Scholar 

  12. Ben-Zichri S et al (2019) Cardiolipin mediates curcumin interactions with mitochondrial membranes. Biochim Biophys Acta Biomembr 1861(1):75–82

    Article  CAS  PubMed  Google Scholar 

  13. Hempel N, Trebak M (2017) Crosstalk between calcium and reactive oxygen species signaling in cancer. Cell Calcium 63:70–96

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Görlach A, Bertram K, Hudecova S, Krizanova O (2015) Calcium and ROS: a mutual interplay. Redox Biol 6:260–271

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Rasola A, Bernardi P (2015) Reprint of ‘The mitochondrial permeability transition pore and its adaptive responses in tumor cells.’ Cell Calcium 58(1):18–26

    Article  CAS  PubMed  Google Scholar 

  16. Pathak T, Trebak M (2018) Mitochondrial Ca2+ signaling. Pharmacol Ther 192:112–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Romero-Garcia S, Prado-Garcia H (2019) Mitochondrial calcium: transport and modulation of cellular processes in homeostasis and cancer. Int J Oncol 54(4):1155–1167 (Review)

    CAS  PubMed  Google Scholar 

  18. Marchi S, Giorgi C, Galluzzi L, Pinton P (2020) Ca2+ fluxes and cancer. Mol Cell 78(6):1055–1069

    Article  CAS  PubMed  Google Scholar 

  19. Pathak T et al (2020) Dichotomous role of the human mitochondrial Na+/Ca2+/Li+ exchanger NCLX in colorectal cancer growth and metastasis. Elife 9:e59686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Guéguinou M et al (2021) L′échangeur ionique NCLX—un rôle ambivalent dans la chronologie du cancer colorectal. Med Sci 37(2):124–126

    Google Scholar 

  21. Montero M et al (2000) Chromaffin-cell stimulation triggers fast millimolar mitochondrial Ca2+ transients that modulate secretion. Nat Cell Biol 2(2):57–61

    Article  CAS  PubMed  Google Scholar 

  22. Guéguinou M et al (2016) SK3/TRPC1/Orai1 complex regulates SOCE-dependent colon cancer cell migration: a novel opportunity to modulate anti-EGFR mAb action by the alkyl-lipid Ohmline. Oncotarget 7(24):36168

    Article  PubMed  PubMed Central  Google Scholar 

  23. Ben‐Kasus Nissim T et al (2017) Mitochondria control store‐operated Ca2+ entry through Na+ and redox signals. EMBO J

  24. Grasso D, Zampieri LX, Capelôa T, Van De Velde JA, Sonveaux P (2020) Mitochondria in cancer. Cell Stress 4(6):114–146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Missiroli S et al (2018) Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis 9(3):329

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Hertlein V et al (2020) MERLIN: a novel BRET-based proximity biosensor for studying mitochondria–ER contact sites. Life Sci. Alliance 3(1):e201900600

    Article  PubMed  Google Scholar 

  27. Bravo R et al (2011) Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci 124(Pt 13):2143–2152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Guinney J et al (2015) The consensus molecular subtypes of colorectal cancer. Nat Med 21(11):1350–1356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y et al (2018) Comparative molecular analysis of gastrointestinal adenocarcinomas. Cancer Cell 33(4):721-735.e8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Weng W, Goel A (2020) Curcumin and colorectal cancer: an update and current perspective on this natural medicine. Semin Cancer Biol

  31. Vultur A, Gibhardt CS, Stanisz H, Bogeski I (2018) The role of the mitochondrial calcium uniporter (MCU) complex in cancer. Pflügers Arch - Eur J Physiol 470(8):1149–1163

    Article  CAS  Google Scholar 

  32. Prevarskaya N, Skryma R, Shuba Y (2018) Ion channels in cancer: are cancer hallmarks oncochannelopathies? Physiol Rev 98(2):559–621

    Article  CAS  PubMed  Google Scholar 

  33. Kostic M, Katoshevski T, Sekler I (2018) Allosteric regulation of NCLX by mitochondrial membrane potential links the metabolic state and Ca2+ signaling in mitochondria. Cell Rep 25(12):3465-3475.e4

    Article  PubMed  Google Scholar 

  34. Samanta K, Mirams GR, Parekh AB (2018) Sequential forward and reverse transport of the Na+ Ca2+ exchanger generates Ca2+ oscillations within mitochondria. Nat Commun 9(1):156

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Moustapha A et al (2015) Curcumin induces crosstalk between autophagy and apoptosis mediated by calcium release from the endoplasmic reticulum, lysosomal destabilization and mitochondrial events. Cell Death Discov 1(1):15017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yoon MJ, Kim EH, Kwon TK, Park SA, Choi KS (2012) Simultaneous mitochondrial Ca2+ overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett 324(2):197–209

    Article  CAS  PubMed  Google Scholar 

  37. Bae JH, Park J-W, Kwon TK (2003) Ruthenium red, inhibitor of mitochondrial Ca2+ uniporter, inhibits curcumin-induced apoptosis via the prevention of intracellular Ca2+ depletion and cytochrome c release. Biochem Biophys Res Commun 303(4):1073–1079

    Article  CAS  PubMed  Google Scholar 

  38. Shin DH, Nam JH, Lee ES, Zhang Y, Kim SJ (2012) Inhibition of Ca2+ release-activated Ca2+ channel (CRAC) by curcumin and caffeic acid phenethyl ester (CAPE) via electrophilic addition to a cysteine residue of Orai1. Biochem Biophys Res Commun 428(1):56–61

    Article  CAS  PubMed  Google Scholar 

  39. Pavlova NN, Thompson CB (2016) The emerging hallmarks of cancer metabolism. Cell Metab 23(1):27–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ivanova H, Kerkhofs M, La Rovere RM, Bultynck G (2017) Endoplasmic reticulum-mitochondrial Ca2+ fluxes underlying cancer cell survival. Front Oncol 7:70

    Article  PubMed  PubMed Central  Google Scholar 

  41. Cárdenas C et al (2016) Selective vulnerability of cancer cells by inhibition of Ca(2+) transfer from endoplasmic reticulum to mitochondria. Cell Rep 14(10):2313–2324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Gherardi G, Monticelli H, Rizzuto R, Mammucari C (2020) The mitochondrial Ca(2+) uptake and the fine-tuning of aerobic metabolism. Front Physiol 11:554904

    Article  PubMed  PubMed Central  Google Scholar 

  43. Assali EA et al (2020) NCLX prevents cell death during adrenergic activation of the brown adipose tissue. Nat Commun 11(1):3347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Wang W, Cui J, Ma H, Lu W, Huang J (2021) Targeting pyrimidine metabolism in the era of precision cancer medicine. Front Oncol 11

  45. Zeisel SH (2012) Dietary choline deficiency causes DNA strand breaks and alters epigenetic marks on DNA and histones. Mutat Res 733(1–2):34–38

    Article  CAS  PubMed  Google Scholar 

  46. Howells LM et al (2019) Curcumin combined with FOLFOX chemotherapy is safe and tolerable in patients with metastatic colorectal cancer in a randomized phase IIa trial. J Nutr 149(7):1133–1139

    Article  PubMed  PubMed Central  Google Scholar 

  47. Scherzed A et al (2015) Effects of salinomycin and CGP37157 on head and neck squamous cell carcinoma cell lines in vitro. Mol Med Rep 12(3):4455–4461

    Article  CAS  PubMed  Google Scholar 

  48. Grossman RL et al (2016) Toward a shared vision for cancer genomic data. N Engl J Med 375(12):1109–1112

    Article  PubMed  PubMed Central  Google Scholar 

  49. Ibrahim S et al (2019) Expression profiling of calcium channels and calcium-activated potassium channels in colorectal cancer. Cancers (Basel) 11(4):561

    Article  CAS  Google Scholar 

  50. Palty R et al (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci U S A 107(1):436–441

    Article  CAS  PubMed  Google Scholar 

  51. Kouzi F et al (2020) Disruption of gap junctions attenuates acute myeloid leukemia chemoresistance induced by bone marrow mesenchymal stromal cells. Oncogene 39(6):1198–1212

    Article  CAS  PubMed  Google Scholar 

  52. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  53. Khuc T, Hsu C-WA, Sakamuru S, Xia M (2016) Using β-lactamase and NanoLuc luciferase reporter gene assays to identify inhibitors of the HIF-1 signaling pathway. Methods Mol Biol 1473:23–31

    Article  PubMed  PubMed Central  Google Scholar 

  54. Nemani N et al (2018) MIRO-1 Determines mitochondrial shape transition upon GPCR activation and Ca2+ stress. Cell Rep 23(4):1005–1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Pan X et al (2013) The physiological role of mitochondrial calcium revealed by mice lacking the mitochondrial calcium uniporter. Nat Cell Biol 15(12):1464–1472

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Jones E et al (2017) A threshold of transmembrane potential is required for mitochondrial dynamic balance mediated by DRP1 and OMA1. Cell Mol Life Sci 74(7):1347–1363

    Article  CAS  PubMed  Google Scholar 

  57. Picou F et al (2018) n-3 Polyunsaturated fatty acids induce acute myeloid leukemia cell death associated with mitochondrial glycolytic switch and Nrf2 pathway activation. Pharmacol Res 136:45–55

    Article  CAS  PubMed  Google Scholar 

  58. Guéguinou M et al (2021) Synthetic alkyl-ether-lipid promotes TRPV2 channel trafficking trough PI3K/Akt-girdin axis in cancer cells and increases mammary tumour volume. Cell Calcium 97:102435

    Article  PubMed  CAS  Google Scholar 

  59. Kim SM, Kim Y, Jeong K, Jeong H, Kim J (2018) Logistic LASSO regression for the diagnosis of breast cancer using clinical demographic data and the BI-RADS lexicon for ultrasonography. Ultrasonography (Seoul, Korea) 37(1):36–42

    Google Scholar 

  60. Xu Q-S, Liang Y-Z, Du Y-P (2004) Monte Carlo cross-validation for selecting a model and estimating the prediction error in multivariate calibration. J Chemom 18(2):112–120

    Article  CAS  Google Scholar 

  61. Molinaro AM, Simon R, Pfeiffer RM (2005) Prediction error estimation: a comparison of resampling methods. Bioinformatics 21(15):3301–3307

    Article  CAS  PubMed  Google Scholar 

  62. Diémé B et al (2015) Metabolomics study of urine in autism spectrum disorders using a multiplatform analytical methodology. J Proteome Res 14(12):5273–5282

    Article  PubMed  CAS  Google Scholar 

  63. Mavel S et al (2013) 1H–13C NMR-based urine metabolic profiling in autism spectrum disorders. Talanta 114:95–102

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Virginie André, Julien Sobilo, and Isabelle Domingo for technical assistance. Inserm UMR 1069 is leader of Cancéropole Grand-Ouest 3MC network (Marine Molecules, Metabolism and Cancer), member of Région Centre—Val de Loire thematic research consortium RTR MOTIVHEALTH (Molecular and Technological Innovation for Health) and member of CNRS research group APPICOM (Integrative Approach for a multiscale functional analysis of membrane proteins). We acknowledge Inserm, Université de Tours and Région Centre-Val de Loire for their financial supports.

Funding

This project was partly supported by grants on behalf of the following french department committees of Ligue Contre le Cancer Grand-Ouest: 16 (Charente), 37 (Indre-et-Loire), 49 (Maine-et-Loire), 72 (Sarthe) and 85 (Vendée). Maxime Guéguinou is a recipient of a 3-years postdoctoral grant from Région Centre—Val de Loire (Opticoregumine project). Sajida Ibrahim was partly funded by ARFMAD (Association Recherche et Formation dans les Maladies de l’Appareil Digestif). Alison Robert is a recipient of a 3-years doctoral grant from Inserm/ Région Centre – Val de Loire. David Crottès is a recipient of SMART LOIRE VALLEY fellowship from LE STUDIUM Loire Valley Institute for Advanced Studies. COLOMIN cohort was supported in part by a grant from the association “Sport et Collection” and “Ligue Contre le Cancer, Comités départementaux de la Vienne, Charente et Charente-Maritime” (David Tougeron).

Author information

Authors and Affiliations

Authors

Contributions

Study concept and design: MG, WR, and TL. Acquisition of data: MG, SI, JB, AR, TP, XZ, JD, DT, RG, HFR, AL, SL, RC, MO, OS, OH, GFH, DTo, and TL. Analysis and interpretation of data: MG, SI, JB, AR, TP, XZ, DC, JD, DT, VM, HFR, AL, SL, ALP, JFD, PGF, AG, RC, FG, AJGS, PE, OS, OH, GFH, CV, DTo, MT, WR, and TL. Drafting of the manuscript: MG, SI, JB, PE, OS, CV, DTo, MT, WR, and TL. Critical revision of the manuscript for important intellectual content: All. Statistical analysis: MG, SI, JB, VM, PE, DTo, WR, and TL. Obtained funding: MG, AG, DTo, WR, and TL. Study supervision: MG, WR, and TL.

Corresponding authors

Correspondence to Maxime Guéguinou or Thierry Lecomte.

Ethics declarations

Conflict of interest

No competing interests were disclosed by authors.

Ethics approval and consent to participate

COLOMIN study was designed in accordance with legal requirements and the Declaration of Helsinki, and was approved by the ethics committee of CHU Poitiers and CHRU Tours, France (Comité de protection des personnes Ouest III, no. DC-2008-565 and no. 2018-039).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 21875 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guéguinou, M., Ibrahim, S., Bourgeais, J. et al. Curcumin and NCLX inhibitors share anti-tumoral mechanisms in microsatellite-instability-driven colorectal cancer. Cell. Mol. Life Sci. 79, 284 (2022). https://doi.org/10.1007/s00018-022-04311-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04311-4

Keywords

Navigation