Skip to main content
Log in

MCL1 alternative polyadenylation is essential for cell survival and mitochondria morphology

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Alternative polyadenylation in the 3′ UTR (3′ UTR-APA) is a mode of gene expression regulation, fundamental for mRNA stability, translation and localization. In the immune system, it was shown that upon T cell activation, there is an increase in the relative expression of mRNA isoforms with short 3′ UTRs resulting from 3′ UTR-APA. However, the functional significance of 3′ UTR-APA remains largely unknown. Here, we studied the physiological function of 3′ UTR-APA in the regulation of Myeloid Cell Leukemia 1 (MCL1), an anti-apoptotic member of the Bcl-2 family essential for T cell survival. We found that T cells produce two MCL1 mRNA isoforms (pA1 and pA2) by 3′ UTR-APA. We show that upon T cell activation, there is an increase in both the shorter pA1 mRNA isoform and MCL1 protein levels. Moreover, the less efficiently translated pA2 isoform is downregulated by miR-17, which is also more expressed upon T cell activation. Therefore, by increasing the expression of the more efficiently translated pA1 mRNA isoform, which escapes regulation by miR-17, 3′ UTR-APA fine tunes MCL1 protein levels, critical for activated T cells’ survival. Furthermore, using CRISPR/Cas9-edited cells, we show that depletion of either pA1 or pA2 mRNA isoforms causes severe defects in mitochondria morphology, increases apoptosis and impacts cell proliferation. Collectively, our results show that MCL1 alternative polyadenylation has a key role in the regulation of MCL1 protein levels upon T cell activation and reveal an essential function for MCL1 3′ UTR-APA in cell viability and mitochondria dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of data and material

The workflow for mitochondrial morphology analysis as well as the training datasets used can be downloaded from: https://github.com/econdesousa/ImageAnalysis/tree/master/MitochondrialStats and the workflow for the cell segmentation performed for the 2D intensity measurements can be downloaded from: https://github.com/econdesousa/CellPoseSegPlusIntensityMeasurement. Additional data that support the findings of this work are available upon request.

References

  1. Derti A et al (2012) A quantitative atlas of polyadenylation in five mammals. Genome Res 22(6):1173–1183

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Gruber AJ, Zavolan M (2019) Alternative cleavage and polyadenylation in health and disease. Nat Rev Genet 20(10):599–614

    CAS  PubMed  Google Scholar 

  3. Hoque M et al (2013) Analysis of alternative cleavage and polyadenylation by 3′ region extraction and deep sequencing. Nat Methods 10(2):133–139

    CAS  PubMed  Google Scholar 

  4. Berkovits BD, Mayr C (2015) Alternative 3′ UTRs act as scaffolds to regulate membrane protein localization. Nature 522(7556):363–367

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Di G, Nishida K, Manley JL (2011) Mechanisms and consequences of alternative polyadenylation. Mol Cell 43(6):853–866

    Google Scholar 

  6. Lutz CS, Moreira A (2011) Alternative mRNA polyadenylation in eukaryotes: an effective regulator of gene expression. Wiley Interdiscip Rev RNA 2(1):22–31

    CAS  PubMed  Google Scholar 

  7. Mayr C (2016) Evolution and biological roles of alternative 3′UTRs. Trends Cell Biol 26(3):227–237

    CAS  PubMed  Google Scholar 

  8. Tian B, Manley JL (2017) Alternative polyadenylation of mRNA precursors. Nat Rev Mol Cell Biol 18(1):18–30

    CAS  PubMed  Google Scholar 

  9. Ji Z et al (2009) Progressive lengthening of 3′ untranslated regions of mRNAs by alternative polyadenylation during mouse embryonic development. Proc Natl Acad Sci USA 106(17):7028–7033

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Miura P et al (2013) Widespread and extensive lengthening of 3′ UTRs in the mammalian brain. Genome Res 23(5):812–825

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Beaudoing E et al (2000) Patterns of variant polyadenylation signal usage in human genes. Genome Res 10(7):1001–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Proudfoot NJ, Brownlee GG (1976) 3′ non-coding region sequences in eukaryotic messenger RNA. Nature 263(5574):211–214

    CAS  PubMed  Google Scholar 

  13. Danckwardt S et al (2007) Splicing factors stimulate polyadenylation via USEs at non-canonical 3′ end formation signals. EMBO J 26(11):2658–2669

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Moreira A et al (1998) The upstream sequence element of the C2 complement poly(A) signal activates mRNA 3′ end formation by two distinct mechanisms. Genes Dev 12(16):2522–2534

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Natalizio BJ et al (2002) Upstream elements present in the 3′-untranslated region of collagen genes influence the processing efficiency of overlapping polyadenylation signals. J Biol Chem 277(45):42733–42740

    CAS  PubMed  Google Scholar 

  16. Nunes NM et al (2010) A functional human Poly(A) site requires only a potent DSE and an A-rich upstream sequence. EMBO J 29(9):1523–1536

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Li W et al (2015) Systematic profiling of poly(A)+ transcripts modulated by core 3′ end processing and splicing factors reveals regulatory rules of alternative cleavage and polyadenylation. PLoS Genet 11(4):e1005166

    PubMed  PubMed Central  Google Scholar 

  18. Shi Y et al (2009) Molecular architecture of the human pre-mRNA 3′ processing complex. Mol Cell 33(3):365–376

    CAS  PubMed  PubMed Central  Google Scholar 

  19. de Klerk E et al (2012) Poly(A) binding protein nuclear 1 levels affect alternative polyadenylation. Nucleic Acids Res 40(18):9089–9101

    PubMed  PubMed Central  Google Scholar 

  20. Kubo T et al (2006) Knock-down of 25 kDa subunit of cleavage factor Im in Hela cells alters alternative polyadenylation within 3′-UTRs. Nucleic Acids Res 34(21):6264–6271

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Lackford B et al (2014) Fip1 regulates mRNA alternative polyadenylation to promote stem cell self-renewal. EMBO J 33(8):878–889

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Takagaki Y et al (1996) The polyadenylation factor CstF-64 regulates alternative processing of IgM heavy chain pre-mRNA during B cell differentiation. Cell 87(5):941–952

    CAS  PubMed  Google Scholar 

  23. Curinha A et al (2014) Implications of polyadenylation in health and disease. Nucleus 5(6):508–519

    PubMed  PubMed Central  Google Scholar 

  24. Pereira-Castro I, Moreira A (2021) On the function and relevance of alternative 3′-UTRs in gene expression regulation. Wiley Interdiscip Rev RNA e1653

  25. Sandberg R et al (2008) Proliferating cells express mRNAs with shortened 3′ untranslated regions and fewer microRNA target sites. Science 320(5883):1643–1647

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Sommerkamp P et al (2020) Differential Alternative Polyadenylation Landscapes Mediate Hematopoietic Stem Cell Activation and Regulate Glutamine Metabolism. Cell Stem Cell 26(5):722-738e7

    CAS  PubMed  Google Scholar 

  27. Pai AA et al (2016) Widespread Shortening of 3′ Untranslated Regions and Increased Exon Inclusion Are Evolutionarily Conserved Features of Innate Immune Responses to Infection. PLoS Genet 12(9):e1006338

    PubMed  PubMed Central  Google Scholar 

  28. Mayr C, Bartel DP (2009) Widespread shortening of 3′UTRs by alternative cleavage and polyadenylation activates oncogenes in cancer cells. Cell 138(4):673–684

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Morris AR et al (2012) Alternative cleavage and polyadenylation during colorectal cancer development. Clin Cancer Res 18(19):5256–5266

    CAS  PubMed  Google Scholar 

  30. Cheng LC et al (2020) Widespread transcript shortening through alternative polyadenylation in secretory cell differentiation. Nat Commun 11(1):3182

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen M et al. (2008) 3′ UTR lengthening as a novel mechanism in regulating cellular senescence. Genome Res

  32. Hilgers V et al (2011) Neural-specific elongation of 3′ UTRs during Drosophila development. Proc Natl Acad Sci U S A 108(38):15864–15869

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Domingues RG et al (2016) CD5 expression is regulated during human T-cell activation by alternative polyadenylation, PTBP1, and miR-204. Eur J Immunol 46(6):1490–1503

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Braz SO et al (2017) Expression of Rac1 alternative 3′ UTRs is a cell specific mechanism with a function in dendrite outgrowth in cortical neurons. Biochim Biophys Acta Gene Regul Mech 1860(6):685–694

    CAS  PubMed  Google Scholar 

  35. Pinto PA et al (2011) RNA polymerase II kinetics in polo polyadenylation signal selection. EMBO J 30(12):2431–2444

    CAS  PubMed  PubMed Central  Google Scholar 

  36. de Morree A et al (2019) Alternative polyadenylation of Pax3 controls muscle stem cell fate and muscle function. Science 366(6466):734–738

    PubMed  PubMed Central  Google Scholar 

  37. An JJ et al (2008) Distinct role of long 3′ UTR BDNF mRNA in spine morphology and synaptic plasticity in hippocampal neurons. Cell 134(1):175–187

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Dzhagalov I, Dunkle A, He YW (2008) The anti-apoptotic Bcl-2 family member Mcl-1 promotes T lymphocyte survival at multiple stages. J Immunol 181(1):521–528

    CAS  PubMed  Google Scholar 

  39. Kozopas KM et al (1993) MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci 90(8):3516–3520

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Michels J, Johnson PW, Packham G (2005) Mcl-1. Int J Biochem Cell Biol 37(2):267–271

    CAS  PubMed  Google Scholar 

  41. Senichkin VV et al (2019) Molecular comprehension of Mcl-1: from gene structure to cancer therapy. Trends Cell Biol 29(7):549–562

    CAS  PubMed  Google Scholar 

  42. Opferman JT et al (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426(6967):671–676

    CAS  PubMed  Google Scholar 

  43. Fernandez-Marrero Y et al (2016) Survival control of malignant lymphocytes by anti-apoptotic MCL-1. Leukemia 30(11):2152–2159

    CAS  PubMed  Google Scholar 

  44. Campbell KJ et al (2018) MCL-1 is a prognostic indicator and drug target in breast cancer. Cell Death Dis 9(2):19

    PubMed  PubMed Central  Google Scholar 

  45. Song L et al (2005) Mcl-1 regulates survival and sensitivity to diverse apoptotic stimuli in human non-small cell lung cancer cells. Cancer Biol Ther 4(3):267–276

    CAS  PubMed  Google Scholar 

  46. Fleischer B et al (2006) Mcl-1 is an anti-apoptotic factor for human hepatocellular carcinoma. Int J Oncol 28(1):25–32

    CAS  PubMed  Google Scholar 

  47. Kearse M et al (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649

    PubMed  PubMed Central  Google Scholar 

  48. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29(9):e45

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Liu H, Naismith JH (2008) An efficient one-step site-directed deletion, insertion, single and multiple-site plasmid mutagenesis protocol. BMC Biotechnol 8:91

    PubMed  PubMed Central  Google Scholar 

  50. Hwang HW, Wentzel EA, Mendell JT (2009) Cell-cell contact globally activates microRNA biogenesis. Proc Natl Acad Sci U S A 106(17):7016–7021

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11(8):783–784

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Schindelin J et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682

    CAS  PubMed  Google Scholar 

  53. Rueden CT et al (2017) Image J2: ImageJ for the next generation of scientific image data. BMC Bioinformat 18(1):529

    Google Scholar 

  54. Berg S et al (2019) ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16(12):1226–1232

    CAS  PubMed  Google Scholar 

  55. Vorkel D, Haase R (2020) GPU-accelerating ImageJ Macro image processing workflows using CLIJ. arXiv preprint arXiv:2008.11799

  56. Haase R et al (2020) Interactive design of GPU-accelerated Image Data Flow Graphs and cross-platform deployment using multi-lingual code generation. bioRxiv. https://doi.org/10.1101/2020.11.19.386565

    Article  Google Scholar 

  57. Haase R et al (2020) CLIJ: GPU-accelerated image processing for everyone. Nat Methods 17(1):5–6

    CAS  PubMed  Google Scholar 

  58. Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832–844

    Google Scholar 

  59. Schmidt U et al (2018) Cell detection with star-convex polygons. In international conference on medical image computing and computer-assisted intervention. Springer

  60. Ollion J et al (2013) TANGO: a generic tool for high-throughput 3D image analysis for studying nuclear organization. Bioinformatics 29(14):1840–1841

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Stringer C et al (2021) Cellpose: a generalist algorithm for cellular segmentation. Nat Methods 18(1):100–106

    CAS  PubMed  Google Scholar 

  62. Legland D, Arganda-Carreras I, Andrey P (2016) MorphoLibJ: integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 32(22):3532–3534

    CAS  PubMed  Google Scholar 

  63. Bingle CD et al (2000) Exon skipping in Mcl-1 results in a bcl-2 homology domain 3 only gene product that promotes cell death. J Biol Chem 275(29):22136–22146

    CAS  PubMed  Google Scholar 

  64. Bae J et al (2000) MCL-1S, a splicing variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH3 domain. J Biol Chem 275(33):25255–25261

    CAS  PubMed  Google Scholar 

  65. Corkum CP et al (2015) Immune cell subsets and their gene expression profiles from human PBMC isolated by Vacutainer Cell Preparation Tube (CPT) and standard density gradient. BMC Immunol 16:48

    PubMed  PubMed Central  Google Scholar 

  66. Gruber AR et al (2014) Global 3′ UTR shortening has a limited effect on protein abundance in proliferating T cells. Nat Commun 5:5465

    CAS  PubMed  Google Scholar 

  67. Perciavalle RM et al (2012) Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat Cell Biol 14(6):575–583

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Germain M, Duronio V (2007) The N terminus of the anti-apoptotic BCL-2 homologue MCL-1 regulates its localization and function. J Biol Chem 282(44):32233–32242

    CAS  PubMed  Google Scholar 

  69. Jamil S et al (2005) A proteolytic fragment of Mcl-1 exhibits nuclear localization and regulates cell growth by interaction with Cdk1. Biochem J 387(Pt 3):659–667

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Pawlikowska P et al (2010) ATM-dependent expression of IEX-1 controls nuclear accumulation of Mcl-1 and the DNA damage response. Cell Death Differ 17(11):1739–1750

    CAS  PubMed  Google Scholar 

  71. Neve J et al (2016) Subcellular RNA profiling links splicing and nuclear DICER1 to alternative cleavage and polyadenylation. Genome Res 26(1):24–35

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Labi V, Schoeler K, Melamed D (2019) miR-17 ~ 92 in lymphocyte development and lymphomagenesis. Cancer Lett 446:73–80

    CAS  PubMed  Google Scholar 

  73. He L, Hannon GJ (2004) MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5(7):522–531

    CAS  PubMed  Google Scholar 

  74. Oliveira MS et al (2019) Cell Cycle Kinase Polo Is Controlled by a Widespread 3′ Untranslated Region Regulatory Sequence in Drosophila melanogaster. Mol Cell Biol 39(15):e00581–18

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Proudfoot NJ (2011) Ending the message: poly(A) signals then and now. Genes Dev 25(17):1770–1782

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhao Y et al (2017) Demethylzeylasteral inhibits cell proliferation and induces apoptosis through suppressing MCL1 in melanoma cells. Cell Death Dis 8(10):e3133

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Whitaker RH, Placzek WJ (2020) MCL1 binding to the reverse BH3 motif of P18INK4C couples cell survival to cell proliferation. Cell Death Dis 11(2):156

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Widden H, Placzek WJ (2021) The multiple mechanisms of MCL1 in the regulation of cell fate. Commun Biol 4(1):1029

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Morciano G et al (2016) Mcl-1 involvement in mitochondrial dynamics is associated with apoptotic cell death. Mol Biol Cell 27(1):20–34

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Morciano G et al (2016) Intersection of mitochondrial fission and fusion machinery with apoptotic pathways: Role of Mcl-1. Biol Cell 108(10):279–293

    CAS  PubMed  Google Scholar 

  81. Rasmussen ML et al (2018) A Non-apoptotic function of MCL-1 in promoting pluripotency and modulating mitochondrial dynamics in stem cells. Stem Cell Reports 10(3):684–692

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rasmussen ML et al (2020) MCL-1 inhibition by selective BH3 mimetics disrupts mitochondrial dynamics causing loss of viability and functionality of human cardiomyocytes. IScience 23(4):101015

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Leonard AP et al (2015) Quantitative analysis of mitochondrial morphology and membrane potential in living cells using high-content imaging, machine learning, and morphological binning. Biochim Biophys Acta 1853(2):348–360

    CAS  PubMed  Google Scholar 

  84. Chen H et al (2003) Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol 160(2):189–200

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Cohen MM, Tareste D (2018) Recent insights into the structure and function of Mitofusins in mitochondrial fusion. F10000Res https://doi.org/10.12688/f1000research.16629.1

  86. Mayr C (2017) Regulation by 3′-Untranslated Regions. Annu Rev Genet 51:171–194

    CAS  PubMed  Google Scholar 

  87. Drake JA et al (2006) Conserved noncoding sequences are selectively constrained and not mutation cold spots. Nat Genet 38(2):223–227

    CAS  PubMed  Google Scholar 

  88. Duret L, Dorkeld F, Gautier C (1993) Strong conservation of non-coding sequences during vertebrates evolution: potential involvement in post-transcriptional regulation of gene expression. Nucleic Acids Res 21(10):2315–2322

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Li YQ et al (2020) FNDC3B 3′-UTR shortening escapes from microRNA-mediated gene repression and promotes nasopharyngeal carcinoma progression. Cancer Sci 111(6):1991–2003

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Mogilyansky E, Rigoutsos I (2013) The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ 20(12):1603–1614

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Thomas LW et al (2012) Serine 162, an essential residue for the mitochondrial localization, stability and anti-apoptotic function of Mcl-1. PLoS ONE 7(9):e45088

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Chong SJF et al (2020) Noncanonical cell fate regulation by Bcl-2 proteins. Trends Cell Biol 30(7):537–555

    CAS  PubMed  Google Scholar 

  93. Yu R et al (2019) Human Fis1 regulates mitochondrial dynamics through inhibition of the fusion machinery. EMBO J 38:e99748

    PubMed  PubMed Central  Google Scholar 

  94. Tilokani L et al (2018) Mitochondrial dynamics: overview of molecular mechanisms. Essays Biochem 62(3):341–360

    PubMed  PubMed Central  Google Scholar 

  95. Joaquim M, Escobar-Henriques M (2020) Role of mitofusins and mitophagy in life or death decisions. Front Cell Dev Biol 8:572182

    PubMed  PubMed Central  Google Scholar 

  96. Milani M et al (2019) DRP-1 functions independently of mitochondrial structural perturbations to facilitate BH3 mimetic-mediated apoptosis. Cell Death Discov 5:117

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the i3S Scientific Platforms: Advanced Light Microscopy and Bioimaging, members of national infrastructure PPBI (supported by POCI-01-0145-FEDER-022122), Translational Cytometry Scientific Platform and Genomics Platform. The authors would like to thank Serviço de Imunohemoterapia of Centro Hospitalar Universitário de São João (CHUSJ), Porto for kindly donating the buffy coats. We are very grateful to Eric J. Wagner (UTMB, Houston, USA) and Joel R. Neilson (Baylor College of Medicine, Houston, USA) for reagents and helpful discussions and Elsa Logarinho, Catarina Meireles, Emília Cardoso and Rita Santos (i3S, Porto, Portugal) for the useful discussions on cytometry data.

Funding

This work was funded by Fundo Europeu de Desenvolvimento Regional (FEDER) funds through the COMPETE 2020-Operational Program for Competitiveness and Internationalisation (POCI), Portugal 2020, and by Portuguese funds through Fundação para a Ciência e a Tecnologia (FCT)/Ministério da Ciência, Tecnologia e Ensino Superior, in the framework of the project Institute for Research and Innovation in Health Sciences (POCI-01–0145-FEDER-007274). This study was also supported by the “Cancer Research on Therapy Resistance: From Basic Mechanisms to Novel Targets”—NORTE-01–0145-FEDER-000051 project, supported by Norte Portugal Regional Operational Programme (NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (ERDF), by the European Union’s Horizon 2020 research and innovation programme under grant agreement No 952334, by FCT under the project EXPL/SAU-PUB/1073/2021 and by Programa Operacional Regional do Norte and co-funded by European Regional Development Fund under the project “The Porto Comprehensive Cancer Center” with the reference NORTE-01–0145-FEDER-072678—Consórcio PORTO.CCC—Porto Comprehensive Cancer Center. EC-S was supported by the project PPBI-POCI-01–0145-FEDER-022122 in the scope of Fundação para a Ciência e Tecnologia, National Roadmap of Research Infrastructures. IP-C is funded by a Junior Researcher contract (DL 57/2016/CP1355/CT0016).

Author information

Authors and Affiliations

Authors

Contributions

IP-C designed and performed the experiments, analyzed the data and wrote the manuscript; BCG contributed to the experiments with the CRIPR/Cas9 cell lines; AC contributed to the miRNA experiments; AN-C generated some of the lentivirus used in this work; EC-S analyzed the mitochondria microscopy images and develop the workflows for image analysis; LFM contributed with intellectual input and revised the manuscript; AM designed and supervised the project and wrote the manuscript. All the authors have read and approved the final version of the manuscript.

Corresponding authors

Correspondence to Isabel Pereira-Castro or Alexandra Moreira.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Ethics approval and consent to participate

The isolation of immune cells from buffy coats of healthy blood donors was approved by the Centro Hospitalar Universitário São João Ethics Committee (protocol 90/19), after each donor informed consent collection.

Consent for publication

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1285 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pereira-Castro, I., Garcia, B.C., Curinha, A. et al. MCL1 alternative polyadenylation is essential for cell survival and mitochondria morphology. Cell. Mol. Life Sci. 79, 164 (2022). https://doi.org/10.1007/s00018-022-04172-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04172-x

Keywords

Navigation