Skip to main content
Log in

Revisiting ZAR proteins: the understudied regulator of female fertility and beyond

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Putative RNA-binding proteins (RBPs), zygote arrested-1 (ZAR1), and ZAR2 (also known as ZAR1L), have been identified as maternal factors that mainly function in oogenesis and embryogenesis. Despite divergence in their spatio-temporal expression among species, the CxxC structure of the C-terminus of ZAR proteins is highly conserved and is reported to be the functional domain for the activity of the RBPs of ZAR proteins. In oocytes from Xenopus laevis and zebrafish, ZAR proteins have been reported to bind to maternal transcripts and inhibit translation in immature growing oocytes, whereas in fully grown mouse oocytes, they promote the translation during meiotic maturation. Thus, ZAR1 and ZAR2 may be required for the maternal-to-zygotic transition by stabilizing the maternal transcriptome in oocytes with partial functional redundancy. In addition, recent studies have suggested non-ovarian expression and function of ZAR proteins, particularly their involvement in tumorigenesis. ZAR proteins are potentially associated with tumor suppressors and can serve as epigenetically inactivated cancer biomarkers. In this review, studies on Zar1/2 are systematically summarized, and some issues that require discussion and further investigation are introduced as perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Glisovic T, Bachorik JL, Yong J, Dreyfuss G (2008) RNA-binding proteins and post-transcriptional gene regulation. FEBS Lett 582:1977–1986

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hu J, Wang F, Zhu X, Yuan Y, Ding M, Gao S (2010) Mouse ZAR1-like (XM_359149) colocalizes with mRNA processing components and its dominant-negative mutant caused two-cell-stage embryonic arrest. Dev Dyn 239:407–424

    CAS  PubMed  Google Scholar 

  3. Charlesworth A, Yamamoto TM, Cook JM, Silva KD, Kotter CV, Carter GS et al (2012) Xenopus laevis zygote arrest 2 (zar2) encodes a zinc finger RNA-binding protein that binds to the translational control sequence in the maternal Wee1 mRNA and regulates translation. Dev Biol 369:177–190

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Van Nostrand EL, Pratt GA, Yee BA, Wheeler EC, Blue SM, Mueller J et al (2020) Principles of RNA processing from analysis of enhanced CLIP maps for 150 RNA binding proteins. Genome Biol 21:90

    PubMed  PubMed Central  Google Scholar 

  5. Jiang J, Zhang H, Cao L, Dai X, Zhao L, Liu H et al (2021) Oocyte meiosis-coupled poly(A) polymerase α phosphorylation and activation trigger maternal mRNA translation in mice. Nucleic Acids Res 49:5867–5880

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Sha Q, Zheng W, Wu Y, Li S, Guo L, Zhang S et al (2020) Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat Commun 11:4917

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Wu X, Wang P, Brown CA, Zilinski CA, Matzuk MM (2003) Zygote Arrest 1 (Zar1) is an evolutionarily conserved gene expressed in vertebrate Ovaries1. Biol Reprod 69:861–867

    CAS  PubMed  Google Scholar 

  8. Rong Y, Ji S, Zhu Y, Wu Y, Shen L, Fan H (2019) ZAR1 and ZAR2 are required for oocyte meiotic maturation by regulating the maternal transcriptome and mRNA translational activation. Nucleic Acids Res 47:11387–11402

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhao LW, Fan HY (2021) Revisiting poly(A)-binding proteins: multifaceted regulators during gametogenesis and early embryogenesis. BioEssays 43:2000335

    CAS  Google Scholar 

  10. Corley M, Burns MC, Yeo GW (2020) How RNA-binding proteins interact with RNA: molecules and mechanisms. Mol Cell 78:9–29

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bestor TH (1992) Activation of mammalian DNA methyltransferase by cleavage of a Zn binding regulatory domain. EMBO J 11:2611–2617

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chuang LSH, Ng H, Chia J, Li BFL (1996) Characterisation of independent DNA and multiple Zn-binding domains at the N terminus of human DNA-(Cytosine-5) methyltransferase: modulating the property of a DNA-binding domain by contiguous Zn-binding motifs. J Mol Biol 257:935–948

    CAS  PubMed  Google Scholar 

  13. Sha Q, Zhang J, Fan H (2019) A story of birth and death: mRNA translation and clearance at the onset of maternal-to-zygotic transition in mammals†. Biol Reprod 101:579–590

    PubMed  Google Scholar 

  14. Vastenhouw NL, Cao WX, Lipshitz HD (2019) The maternal-to-zygotic transition revisited. Development 146:v161471

    Google Scholar 

  15. Zhao LW, Zhu YZ, Chen H, Wu YW, Pi SB, Chen L et al (2020) PABPN1L mediates cytoplasmic mRNA decay as a placeholder during the maternal-to-zygotic transition. EMBO Rep 21:e49956

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Sánchez F, Smitz J (2012) Molecular control of oogenesis. Biochimica et Biophysica Acta (BBA) Mol Basis Dis 1822:1896–1912

    Google Scholar 

  17. Saitou M, Yamaji M (2012) Primordial Germ Cells in Mice. Cold Spring Harbor Perspectives in Biology 4:a8375

  18. Coticchio G, Sereni E, Serrao L, Mazzone S, Iadarola I, Borini A (2004) What criteria for the definition of oocyte quality? Ann N Y Acad Sci 1034:132–144

    PubMed  Google Scholar 

  19. Gilchrist RBLMTJ (2008) Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update 14:159–177

    CAS  PubMed  Google Scholar 

  20. Stewart KR, Veselovska L, Kim J, Huang J, Saadeh H, Tomizawa S et al (2015) Dynamic changes in histone modifications precede de novo DNA methylation in oocytes. Genes Dev 29:2449–2462

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hamatani T, Carter MG, Sharov AA, Ko MSH (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6:117–131

    CAS  PubMed  Google Scholar 

  22. Peaston AE, Evsikov AV, Graber JH, de Vries WN, Holbrook AE, Solter D et al (2004) Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. Dev Cell 7:597–606

    CAS  PubMed  Google Scholar 

  23. Christou-Kent M, Dhellemmes M, Lambert E, Ray PF, Arnoult C (2020) Diversity of RNA-binding proteins modulating post-transcriptional regulation of protein expression in the maturing mammalian oocyte. Cells 9:662

    CAS  PubMed Central  Google Scholar 

  24. Wu X, Viveiros MM, Eppig JJ, Bai Y, Fitzpatrick SL, Matzuk MM (2003) Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33:187–191

    CAS  PubMed  Google Scholar 

  25. Sangiorgio L, Strumbo B, Brevini TAL, Ronchi S, Simonic T (2008) A putative protein structurally related to zygote arrest 1 (Zar1), Zar1-like, is encoded by a novel gene conserved in the vertebrate lineage. Comp Biochem Physiol B Biochem Mol Biol 150:233–239

    PubMed  Google Scholar 

  26. Yamamoto TM, Cook JM, Kotter CV, Khat T, Silva KD, Ferreyros M et al (2013) Zar1 represses translation in Xenopus oocytes and binds to the TCS in maternal mRNAs with different characteristics than Zar2. Biochimica et Biophysica Acta (BBA) Gene Regul Mech 1829:1034–1046

    CAS  Google Scholar 

  27. Uzbekova S, Roy-Sabau M, Dalbiès-Tran R, Perreau C, Papillier P, Mompart F et al (2006) Zygote arrest 1 gene in pig, cattle and human: evidence of different transcript variants in male and female germ cells. Reprod Biol Endocrinol 4:12

    PubMed  PubMed Central  Google Scholar 

  28. Michailidis G, Argiriou A, Avdi M (2010) Expression of chicken zygote arrest 1 (Zar1) and Zar1-like genes during sexual maturation and embryogenesis. Vet Res Commun 34:173–184

    PubMed  Google Scholar 

  29. Yu C, Ji S, Sha Q, Dang Y, Zhou J, Zhang Y et al (2016) BTG4 is a meiotic cell cycle–coupled maternal-zygotic-transition licensing factor in oocytes. Nat Struct Mol Biol 23:387–394

    CAS  PubMed  Google Scholar 

  30. Yu J, Hecht NB, Schultz RM (2001) Expression of MSY2 in mouse oocytes and preimplantation Embryos1. Biol Reprod 65:1260–1270

    CAS  PubMed  Google Scholar 

  31. Wright PW, Bolling LC, Calvert ME, Sarmento OF, Berkeley EV, Shea MC et al (2003) ePAD, an oocyte and early embryo-abundant peptidylarginine deiminase-like protein that localizes to egg cytoplasmic sheets. Dev Biol 256:74–89

    Google Scholar 

  32. Hu M, Qi J, Bi G, Zhou J (2020) Bacterial effectors induce oligomerization of immune receptor ZAR1 in vivo. Mol Plant 13:793–801

    CAS  PubMed  Google Scholar 

  33. Brevini TAL, Cillo F, Colleoni S, Lazzari G, Galli C, Gandolfi F (2004) Expression pattern of the maternal factor zygote arrest 1 (Zar1) in bovine tissues, oocytes, and embryos. Mol Reprod Dev 69:375–380

    CAS  PubMed  Google Scholar 

  34. Pennetier S, Uzbekova S, Perreau C, Papillier P, Mermillod P, Dalbiès-Tran R (2004) Spatio-temporal expression of the germ cell marker genes MATER, ZAR1, GDF9, BMP15, andVASA in adult bovine tissues, oocytes, and preimplantation Embryos1. Biol Reprod 71:1359–1366

    CAS  PubMed  Google Scholar 

  35. Miao L, Yuan Y, Cheng F, Fang J, Zhou F, Ma W et al (2016) Translation repression by maternal RNA binding protein zar1 is essential for early oogenesis in zebrafish. Development 144:128–138

    PubMed  Google Scholar 

  36. Tian Y, Yang J, Peng Y, Chen T, Huang T, Zhang C et al (2020) Variation screening of zygote arrest 1(ZAR1) in women with recurrent zygote arrest during IVF/ICSI programs. Reprod Sci 27:2265–2270

    CAS  PubMed  Google Scholar 

  37. Shinojima Y, Terui T, Hara H, Kimura M, Igarashi J, Wang X et al (2010) Identification and analysis of an early diagnostic marker for malignant melanoma: ZAR1 intra-genic differential methylation. J Dermatol Sci 59:98–106

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Richter AM, Kiehl S, Köger N, Breuer J, Stiewe T, Dammann RH (2017) ZAR1 is a novel epigenetically inactivated tumour suppressor in lung cancer. Clin Epigenet 9:60

    Google Scholar 

  39. Misra S, Sharma S, Agarwal A, Khedkar SV, Tripathi MK, Mittal MK et al (2010) Cell cycle-dependent regulation of the bi-directional overlapping promoter of human BRCA2/ZAR2 genes in breast cancer cells. Mol Cancer 9:50

    PubMed  PubMed Central  Google Scholar 

  40. Watanabe T, Yachi K, Ohta T, Fukushima T, Yoshino A, Katayama Y et al (2010) Aberrant hypermethylation of non-promoter zygote Arrest 1 (Zar1) in human brain tumors. Neurol Med Chir 50:1062–1069

    Google Scholar 

  41. Courchaine EMLA (2016) Droplet organelles? EMBO J 35:1603–1612

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Kato M, Han TW, Xie S, Shi K, Du X, Wu LC et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149:753–767

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Yurttas P, Vitale AM, Fitzhenry RJ, Cohen-Gould L, Wu W, Gossen JA et al (2008) Role for PADI6 and the cytoplasmic lattices in ribosomal storage in oocytes and translational control in the early mouse embryo. Development 135:2627–2636

    CAS  PubMed  Google Scholar 

  44. Yang J, Morales CR, Medvedev S, Schultz RM, Hecht NB (2007) In the absence of the mouse DNA/RNA-binding protein MSY2, messenger RNA instability leads to spermatogenic Arrest1. Biol Reprod 76:48–54

    CAS  PubMed  Google Scholar 

  45. Ramat A, Simonelig M (2021) Functions of PIWI proteins in gene regulation: new arrows added to the piRNA Quiver. Trends Genet 37:188–200

    CAS  PubMed  Google Scholar 

  46. Su R, Fan L, Cao C, Wang L, Du Z, Cai Z et al (2021) Global profiling of RNA-binding protein target sites by LACE-seq. Nat Cell Biol 23:664–675

    CAS  PubMed  Google Scholar 

  47. Mayr C (2019) What Are 3′ UTRs doing? Cold Spring Harbor Perspect Biol 11:a34728

    Google Scholar 

  48. Sha Q, Dai X, Dang Y, Tang F, Liu J, Zhang Y et al (2016) A MAPK cascade couples maternal mRNA translation and degradation to meiotic cell cycle progression in mouse oocyte. Development 144:452–463

    PubMed  Google Scholar 

  49. Dai X, Jiang J, Sha Q, Jiang Y, Ou X, Fan H (2019) A combinatorial code for mRNA 3′-UTR-mediated translational control in the mouse oocyte. Nucleic Acids Res 47:328–340

    CAS  PubMed  Google Scholar 

  50. Charlesworth A, Welk J, MacNicol AM (2000) The temporal control of Wee1 mRNA translation during xenopus oocyte maturation is regulated by cytoplasmic polyadenylation elements within the 3′-untranslated region. Dev Biol 227:706–719

    CAS  PubMed  Google Scholar 

  51. Wang YY, Charlesworth A, Byrd SM, Gregerson R, MacNicol MC, MacNicol AM (2008) A novel mRNA 3′ untranslated region translational control sequence regulates Xenopus Wee1 mRNA translation. Dev Biol 317:454–466

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM, Bonanomi D et al (2012) Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63

    CAS  PubMed  PubMed Central  Google Scholar 

  53. VerMilyea MD, O’Neill LP, Turner BM (2009) Transcription-independent heritability of induced histone modifications in the mouse preimplantation embryo. PLoS ONE 4:e6086

    PubMed  PubMed Central  Google Scholar 

  54. Grewal SIS, Jia S (2007) Heterochromatin revisited. Nat Rev Genet 8:35–46

    CAS  PubMed  Google Scholar 

  55. De Iaco A, Coudray A, Duc J, Trono D (2019) DPPA2 and DPPA4 are necessary to establish a 2C-like state in mouse embryonic stem cells. EMBO Rep 20(5):e47382. https://doi.org/10.15252/embr.201847382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Masaki H, Nishida T, Kitajima S, Asahina K, Teraoka H (2007) Developmental pluripotency-associated 4 (DPPA4) localized in active chromatin inhibits mouse embryonic stem cell differentiation into a primitive ectoderm lineage. J Biol Chem 282:33034–33042

    CAS  PubMed  Google Scholar 

  57. Kotaja NSP (2007) The chromatoid body: a germ-cell-specific RNA-processing centre. Nat Rev Mol 1:85–90

    Google Scholar 

  58. Pressman S, Bei Y, Carthew R (2007) SnapShot: posttranscriptional gene silencing. Cell 130:570–571

    PubMed  Google Scholar 

  59. Lim AK, Lorthongpanich C, Chew TG, Tan CWG, Shue YT, Balu S et al (2013) The nuage mediates retrotransposon silencing in mouse primordial ovarian follicles. Development 140:3819–3825

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Kim VN, Han J, Siomi MC (2009) Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol 10:126–139

    CAS  PubMed  Google Scholar 

  61. Taborska E, Pasulka J, Malik R, Horvat F, Jenickova I, Jelić Matošević Z et al (2019) Restricted and non-essential redundancy of RNAi and piRNA pathways in mouse oocytes. PLOS Genet 15:e1008261

    PubMed  PubMed Central  Google Scholar 

  62. Franke V, Ganesh S, Karlic R, Malik R, Pasulka J, Horvat F et al (2017) Long terminal repeats power evolution of genes and gene expression programs in mammalian oocytes and zygotes. Genome Res 27:1384–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Bai D, Sun J, Jia Y, Yin J, Zhang Y, Li Y et al (2020) Genome transfer for the prevention of female infertility caused by maternal gene mutation. J Genet Genom 47:311–319

    Google Scholar 

  64. Sauna ZE, Kimchi-Sarfaty C (2011) Understanding the contribution of synonymous mutations to human disease. Nat Rev Genet 12:683–691

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFC2700100), the National Natural Science Foundation of China (Award Numbers: 31930031 and 31890781), the National Ten-Thousands Talents Program of China, the Natural Science Foundation of Zhejiang Province, China [D22C68649], and the Key Research and Development Program of Zhejiang Province (2021C03098 and 2021C03100). We thank Drs Shu-Yan Ji and Yan Rong for their contributions to the ZAR1/2 studies and helpful discussions. We thank Editage (www.editage.cn) for English language editing.

Funding

This work was funded by the National Natural Science Foundation of China (Award Numbers: 31930031 and 31890781).

Author information

Authors and Affiliations

Authors

Contributions

WYK wrote the manuscript and prepared the figures. FHY conceived and revised the manuscript.

Corresponding author

Correspondence to Heng-Yu Fan.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

Not applicable.

Consent for publication

The authors declare that they have permission to publish this review and that it has not previously been published elsewhere.

Availability of data and materials

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YK., Fan, HY. Revisiting ZAR proteins: the understudied regulator of female fertility and beyond. Cell. Mol. Life Sci. 79, 92 (2022). https://doi.org/10.1007/s00018-022-04141-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-022-04141-4

Keywords

Navigation