Skip to main content

Advertisement

Log in

Sexual determination in zebrafish

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Zebrafish have emerged as a major model organism to study vertebrate reproduction due to their high fecundity and external development of eggs and embryos. The mechanisms through which zebrafish determine their sex have come under extensive investigation, as they lack a definite sex-determining chromosome and appear to have a highly complex method of sex determination. Single-gene mutagenesis has been employed to isolate the function of genes that determine zebrafish sex and regulate sex-specific differentiation, and to explore the interactions of genes that promote female or male sexual fate. In this review, we focus on recent advances in understanding of the mechanisms, including genetic and environmental factors, governing zebrafish sex development with comparisons to gene functions in other species to highlight conserved and potentially species-specific mechanisms for specifying and maintaining sexual fate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gempe T, Beye M (2011) Function and evolution of sex determination mechanisms, genes and pathways in insects. BioEssays 33(1):52–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Bachtrog D et al (2014) Sex determination: why so many ways of doing it? PLoS Biol 12(7):e1001899

    Article  PubMed  PubMed Central  Google Scholar 

  3. Trukhina AV et al (2013) The variety of vertebrate mechanisms of sex determination. Biomed Res Int 2013:587460

    Article  PubMed  PubMed Central  Google Scholar 

  4. Herpin A, Schartl M (2015) Plasticity of gene-regulatory networks controlling sex determination: of masters, slaves, usual suspects, newcomers, and usurpators. EMBO Rep 16(10):1260–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kossack ME, Draper BW (2019) Genetic regulation of sex determination and maintenance in zebrafish (Danio rerio). Curr Top Dev Biol 134:119–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Yoon C, Kawakami K, Hopkins N (1997) Zebrafish vasa homologue RNA is localized to the cleavage planes of 2- and 4-cell-stage embryos and is expressed in the primordial germ cells. Development 124(16):3157–3165

    Article  CAS  PubMed  Google Scholar 

  7. Gross-Thebing T et al (2017) The vertebrate protein dead end maintains primordial germ cell fate by inhibiting somatic differentiation. Dev Cell 43(6):704-715.e5

    Article  CAS  PubMed  Google Scholar 

  8. Siegfried KR, Nüsslein-Volhard C (2008) Germ line control of female sex determination in zebrafish. Dev Biol 324(2):277–287

    Article  CAS  PubMed  Google Scholar 

  9. Weidinger G et al (2003) dead end, a novel vertebrate germ plasm component, is required for zebrafish primordial germ cell migration and survival. Curr Biol 13(16):1429–1434

    Article  CAS  PubMed  Google Scholar 

  10. D’Orazio FM et al (2021) Germ cell differentiation requires Tdrd7-dependent chromatin and transcriptome reprogramming marked by germ plasm relocalization. Dev Cell 56(5):641-656.e5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Redl S et al (2021) Extensive nuclear gyration and pervasive non-genic transcription during primordial germ cell development in zebrafish. Development 148:2

    Google Scholar 

  12. Hartung O, Forbes MM, Marlow FL (2014) Zebrafish vasa is required for germ-cell differentiation and maintenance. Mol Reprod Dev 81(10):946–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Köprunner M et al (2001) A zebrafish nanos-related gene is essential for the development of primordial germ cells. Genes Dev 15(21):2877–2885

    Article  PubMed  PubMed Central  Google Scholar 

  14. Braat AK et al (1999) Characterization of zebrafish primordial germ cells: morphology and early distribution of vasa RNA. Dev Dyn 216(2):153–167

    Article  CAS  PubMed  Google Scholar 

  15. Leerberg DM, Sano K, Draper BW (2017) Fibroblast growth factor signaling is required for early somatic gonad development in zebrafish. PLoS Genet 13(9):e1006993

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bertho S et al (2021) Zebrafish dazl regulates cystogenesis and germline stem cell specification during the primordial germ cell to germline stem cell transition. Development 148:7

    Article  Google Scholar 

  17. Rodríguez-Marí A et al (2005) Characterization and expression pattern of zebrafish anti-Müllerian hormone (Amh) relative to sox9a, sox9b, and cyp19a1a, during gonad development. Gene Exp Patterns 5(5):655–667

    Article  Google Scholar 

  18. Takahashi H (1977) Juvenile hermaphroditism in the zebrafish, Brachydanio rerio. Bull Fac Fish Hokkaido Univ 28:57–65

    Google Scholar 

  19. Tzung KW et al (2015) Early depletion of primordial germ cells in zebrafish promotes testis formation. Stem Cell Rep 4(1):61–73

    Article  CAS  Google Scholar 

  20. Rodríguez-Marí A et al (2010) Sex reversal in zebrafish fancl mutants is caused by Tp53-mediated germ cell apoptosis. PLoS Genet 6(7):e1001034

    Article  PubMed  PubMed Central  Google Scholar 

  21. Dranow DB et al (2016) Bmp15 is an oocyte-produced signal required for maintenance of the adult female sexual phenotype in zebrafish. PLoS Genet 12(9):e1006323

    Article  PubMed  PubMed Central  Google Scholar 

  22. Spiller C, Wilhelm D, Koopman P (2009) Cell cycle analysis of fetal germ cells during sex differentiation in mice. Biol Cell 101(10):587–598

    Article  PubMed  PubMed Central  Google Scholar 

  23. Webster KA et al (2018) Cyclin-dependent kinase 21 is a novel regulator of proliferation and meiosis in the male germline of zebrafish. Reproduction 157(4):383–398

    Article  PubMed  PubMed Central  Google Scholar 

  24. Rodriguez-Mari A, Postlethwait JH (2011) The role of Fanconi anemia/BRCA genes in zebrafish sex determination. Methods Cell Biol 105:461–490

    Article  CAS  PubMed  Google Scholar 

  25. Shive HR et al (2010) brca2 in zebrafish ovarian development, spermatogenesis, and tumorigenesis. Proc Natl Acad Sci U S A 107(45):19350–19355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilson CA et al (2014) Wild sex in zebrafish: loss of the natural sex determinant in domesticated strains. Genetics 198(3):1291–1308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Anderson JL et al (2012) Multiple sex-associated regions and a putative sex chromosome in zebrafish revealed by RAD mapping and population genomics. PLoS ONE 7(7):e40701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bradley KM et al (2011) An SNP-based linkage map for zebrafish reveals sex determination loci. G3 (Bethesda) 1(1):3–9

    Article  CAS  Google Scholar 

  29. Howe K et al (2013) The zebrafish reference genome sequence and its relationship to the human genome. Nature 496(7446):498–503

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Liew WC et al (2012) Polygenic sex determination system in zebrafish. PLoS ONE 7(4):e34397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee HJ, Hore TA, Reik W (2014) Reprogramming the methylome: erasing memory and creating diversity. Cell Stem Cell 14(6):710–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Ortega-Recalde O et al (2019) Zebrafish preserve global germline DNA methylation while sex-linked rDNA is amplified and demethylated during feminisation. Nat Commun 10(1):3053

    Article  PubMed  PubMed Central  Google Scholar 

  33. Skvortsova K et al (2019) Retention of paternal DNA methylome in the developing zebrafish germline. Nat Commun 10(1):3054

    Article  PubMed  PubMed Central  Google Scholar 

  34. Uchida D et al (2002) Oocyte apoptosis during the transition from ovary-like tissue to testes during sex differentiation of juvenile zebrafish. J Exp Biol 205(Pt 6):711–718

    Article  PubMed  Google Scholar 

  35. Dranow DB, Tucker RP, Draper BW (2013) Germ cells are required to maintain a stable sexual phenotype in adult zebrafish. Dev Biol 376(1):43–50

    Article  CAS  PubMed  Google Scholar 

  36. Gagnon JA et al (2014) Efficient mutagenesis by Cas9 protein-mediated oligonucleotide insertion and large-scale assessment of single-guide RNAs. PLoS ONE 9(5):e98186

    Article  PubMed  PubMed Central  Google Scholar 

  37. Matson CK, Zarkower D (2012) Sex and the singular DM domain: insights into sexual regulation, evolution and plasticity. Nat Rev Genet 13(3):163–174

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Webster KA et al (2017) Dmrt1 is necessary for male sexual development in zebrafish. Dev Biol 422(1):33–46

    Article  CAS  PubMed  Google Scholar 

  39. Lin Q et al (2017) Distinct and cooperative roles of amh and dmrt1 in self-renewal and differentiation of male germ cells in zebrafish. Genetics 207(3):1007–1022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Yan YL et al (2019) A hormone that lost its receptor: anti-müllerian hormone (AMH) in zebrafish gonad development and sex determination. Genetics 213(2):529–553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zhang Z et al (2020) Genetic evidence for Amh modulation of gonadotropin actions to control gonadal homeostasis and gametogenesis in zebrafish and its noncanonical signaling through Bmpr2a receptor. Development 147:22

    Google Scholar 

  42. Yan YL et al (2017) Gonadal soma controls ovarian follicle proliferation through Gsdf in zebrafish. Dev Dyn 246(11):925–945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Andersson O et al (2006) Synergistic interaction between Gdf1 and nodal during anterior axis development. Dev Biol 293(2):370–381

    Article  CAS  PubMed  Google Scholar 

  44. Tanaka C et al (2007) Long-range action of nodal requires interaction with GDF1. Genes Dev 21(24):3272–3282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Marlow FL (2020) Setting up for gastrulation in zebrafish. Curr Top Dev Biol 136:33–83

    Article  CAS  PubMed  Google Scholar 

  46. Little SC, Mullins MC (2009) Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 11(5):637–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yu G et al (2018) Zebrafish androgen receptor is required for spermatogenesis and maintenance of ovarian function. Oncotarget 9(36):24320–24334

    Article  PubMed  PubMed Central  Google Scholar 

  48. Crowder CM, Lassiter CS, Gorelick DA (2018) Nuclear androgen receptor regulates testes organization and oocyte maturation in zebrafish. Endocrinology 159(2):980–993

    Article  CAS  PubMed  Google Scholar 

  49. Lau ES et al (2016) Knockout of zebrafish ovarian aromatase gene (cyp19a1a) by TALEN and CRISPR/Cas9 leads to all-male offspring due to failed ovarian differentiation. Sci Rep 6:37357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Yin Y et al (2017) Targeted disruption of aromatase reveals dual functions of cyp19a1a during sex differentiation in zebrafish. Endocrinology 158(9):3030–3041

    Article  CAS  PubMed  Google Scholar 

  51. Wu K et al (2020) Disruption of dmrt1 rescues the all-male phenotype of the cyp19a1a mutant in zebrafish - a novel insight into the roles of aromatase/estrogens in gonadal differentiation and early folliculogenesis. Development 147:4

    Google Scholar 

  52. Romano S, Kaufman OH, Marlow FL (2020) Loss of dmrt1 restores zebrafish female fates in the absence of cyp19a1a but not rbpms2a/b. Development 147:18

    Google Scholar 

  53. Quirk JG, Hamilton JB (1973) Number of germ cells in known male and known female genotypes of vertebrate embryos (Oryzias latipes). Science 180(4089):963–964

    Article  CAS  PubMed  Google Scholar 

  54. Nishimura T et al (2018) Germ cells in the teleost fish medaka have an inherent feminizing effect. PLoS Genet 14(3):e1007259

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nakamura S et al (2012) Hyperproliferation of mitotically active germ cells due to defective anti-Müllerian hormone signaling mediates sex reversal in medaka. Development 139(13):2283–2287

    Article  CAS  PubMed  Google Scholar 

  56. Morinaga C et al (2007) The hotei mutation of medaka in the anti-Mullerian hormone receptor causes the dysregulation of germ cell and sexual development. Proc Natl Acad Sci U S A 104(23):9691–9696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lewis ZR et al (2008) Female-specific increase in primordial germ cells marks sex differentiation in threespine stickleback (Gasterosteus aculeatus). J Morphol 269(8):909–921

    Article  PubMed  PubMed Central  Google Scholar 

  58. Kurokawa H et al (2007) Germ cells are essential for sexual dimorphism in the medaka gonad. Proc Natl Acad Sci U S A 104(43):16958–16963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Hartung OMF (2014) Get it together: how RNA-binding proteins assemble and regulate germ plasm in the oocyte and embryo. In: (Lessman CE ed) Zebrafish: topics in reproduction, toxicology and development. Nova Science Publishers, Inc., New York, pp 65–106

  60. Kaufman OH et al (2018) rbpms2 functions in Balbiani body architecture and ovary fate. PLoS Genet 14(7):e1007489

    Article  PubMed  PubMed Central  Google Scholar 

  61. Farazi TA et al (2014) Identification of the RNA recognition element of the RBPMS family of RNA-binding proteins and their transcriptome-wide mRNA targets. RNA 20(7):1090–1102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Zearfoss NR et al (2004) Hermes is a localized factor regulating cleavage of vegetal blastomeres in Xenopus laevis. Dev Biol 267(1):60–71

    Article  CAS  PubMed  Google Scholar 

  63. Yang YJ et al (2017) Sequential, divergent, and cooperative requirements of Foxl2a and Foxl2b in ovary development and maintenance of zebrafish. Genetics 205(4):1551–1572

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Braat AK et al (2000) Vasa protein expression and localization in the zebrafish. Mech Dev 95(1–2):271–274

    Article  CAS  PubMed  Google Scholar 

  65. Krøvel AV, Olsen LC (2004) Sexual dimorphic expression pattern of a splice variant of zebrafish vasa during gonadal development. Dev Biol 271(1):190–197

    Article  PubMed  Google Scholar 

  66. Neuhaus N et al (2017) Single-cell gene expression analysis reveals diversity among human spermatogonia. Mol Hum Reprod 23(2):79–90

    CAS  PubMed  Google Scholar 

  67. Legrand JMD et al (2019) DDX5 plays essential transcriptional and post-transcriptional roles in the maintenance and function of spermatogonia. Nat Commun 10(1):2278

    Article  PubMed  PubMed Central  Google Scholar 

  68. Sone R et al (2020) Critical roles of the ddx5 gene in zebrafish sex differentiation and oocyte maturation. Sci Rep 10(1):14157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Wu X et al (2003) Zygote arrest 1 (Zar1) is a novel maternal-effect gene critical for the oocyte-to-embryo transition. Nat Genet 33(2):187–191

    Article  CAS  PubMed  Google Scholar 

  70. Uzbekova S et al (2006) Zygote arrest 1 gene in pig, cattle and human: evidence of different transcript variants in male and female germ cells. Reprod Biol Endocrinol 4:12

    Article  PubMed  PubMed Central  Google Scholar 

  71. Miao L et al (2017) Translation repression by maternal RNA binding protein Zar1 is essential for early oogenesis in zebrafish. Development 144(1):128–138

    CAS  PubMed  Google Scholar 

  72. Yu G et al (2020) Zebrafish Nedd8 facilitates ovarian development and the maintenance of female secondary sexual characteristics via suppression of androgen receptor activity. Development 147:18

    Article  Google Scholar 

  73. Kim S et al (2014) PRMT5 protects genomic integrity during global DNA demethylation in primordial germ cells and preimplantation embryos. Mol Cell 56(4):564–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Wang Y et al (2015) Protein arginine methyltransferase 5 (Prmt5) is required for germ cell survival during mouse embryonic development. Biol Reprod 92(4):104

    Article  PubMed  Google Scholar 

  75. Zhu J et al (2019) Zebrafish prmt5 arginine methyltransferase is essential for germ cell development. Development 146:20

    Google Scholar 

  76. White YA, Woods DC, Wood AW (2011) A transgenic zebrafish model of targeted oocyte ablation and de novo oogenesis. Dev Dyn 240(8):1929–1937

    Article  CAS  PubMed  Google Scholar 

  77. Beer RL, Draper BW (2013) nanos3 maintains germline stem cells and expression of the conserved germline stem cell gene nanos2 in the zebrafish ovary. Dev Biol 374(2):308–318

    Article  CAS  PubMed  Google Scholar 

  78. Cao Z, Mao X, Luo L (2019) Germline Stem Cells Drive Ovary Regeneration in Zebrafish. Cell Rep 26(7):1709-1717e3

    Article  CAS  PubMed  Google Scholar 

  79. Sada A et al (2009) The RNA-binding protein NANOS2 is required to maintain murine spermatogonial stem cells. Science 325(5946):1394–1398

    Article  CAS  PubMed  Google Scholar 

  80. Aoki Y et al (2009) Expression and syntenic analyses of four nanos genes in medaka. Zool Sci 26(2):112–118

    Article  CAS  Google Scholar 

  81. Nakamura S et al (2010) Identification of germline stem cells in the ovary of the teleost medaka. Science 328(5985):1561–1563

    Article  CAS  PubMed  Google Scholar 

  82. Forbes A, Lehmann R (1998) Nanos and Pumilio have critical roles in the development and function of Drosophila germline stem cells. Development 125(4):679–690

    Article  CAS  PubMed  Google Scholar 

  83. Draper BW, McCallum CM, Moens CB (2007) nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 305(2):589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Wang Z, Lin H (2004) Nanos maintains germline stem cell self-renewal by preventing differentiation. Science 303(5666):2016–2019

    Article  CAS  PubMed  Google Scholar 

  85. Suzuki H et al (2010) The Nanos3–3’UTR is required for germ cell specific NANOS3 expression in mouse embryos. PLoS ONE 5(2):e9300

    Article  PubMed  PubMed Central  Google Scholar 

  86. Barrios F et al (2010) Opposing effects of retinoic acid and FGF9 on Nanos2 expression and meiotic entry of mouse germ cells. J Cell Sci 123(Pt 6):871–880

    Article  CAS  PubMed  Google Scholar 

  87. Boulanger L et al (2014) FOXL2 is a female sex-determining gene in the goat. Curr Biol 24(4):404–408

    Article  CAS  PubMed  Google Scholar 

  88. Ottolenghi C et al (2005) Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 14(14):2053–2062

    Article  CAS  PubMed  Google Scholar 

  89. Uhlenhaut NH et al (2009) Somatic sex reprogramming of adult ovaries to testes by FOXL2 ablation. Cell 139(6):1130–1142

    Article  CAS  PubMed  Google Scholar 

  90. Schmidt D et al (2004) The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 131(4):933–942

    Article  CAS  PubMed  Google Scholar 

  91. Crisponi L et al (2001) The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 27(2):159–166

    Article  CAS  PubMed  Google Scholar 

  92. Caulier M et al (2015) Localization of steroidogenic enzymes and Foxl2a in the gonads of mature zebrafish (Danio rerio). Comp Biochem Physiol A Mol Integr Physiol 188:96–106

    Article  CAS  PubMed  Google Scholar 

  93. Bertho S et al (2016) Foxl2 and its relatives are evolutionary conserved players in gonadal sex differentiation. Sex Dev 10(3):111–129

    Article  CAS  PubMed  Google Scholar 

  94. Bertho S et al (2018) The unusual rainbow trout sex determination gene hijacked the canonical vertebrate gonadal differentiation pathway. Proc Natl Acad Sci U S A 115(50):12781–12786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Wang DS et al (2007) Foxl2 up-regulates aromatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/steroidogenic factor 1. Mol Endocrinol 21(3):712–725

    Article  CAS  PubMed  Google Scholar 

  96. Kobayashi T et al (2017) Estrogen alters gonadal soma-derived factor (Gsdf)/Foxl2 expression levels in the testes associated with testis-ova differentiation in adult medaka, Oryzias latipes. Aquat Toxicol 191:209–218

    Article  CAS  PubMed  Google Scholar 

  97. Zhang X et al (2017) Mutation of foxl2 or cyp19a1a results in female to male sex reversal in XX Nile tilapia. Endocrinology 158(8):2634–2647

    CAS  PubMed  Google Scholar 

  98. Sreenivasan R et al (2014) Gonad differentiation in zebrafish is regulated by the canonical Wnt signaling pathway. Biol Reprod 90(2):45

    Article  PubMed  Google Scholar 

  99. Kossack ME et al (2019) Female sex development and reproductive duct formation depend on Wnt4a in zebrafish. Genetics 211(1):219–233

    Article  CAS  PubMed  Google Scholar 

  100. Su YQ et al (2004) Synergistic roles of BMP15 and GDF9 in the development and function of the oocyte-cumulus cell complex in mice: genetic evidence for an oocyte-granulosa cell regulatory loop. Dev Biol 276(1):64–73

    Article  CAS  PubMed  Google Scholar 

  101. Aaltonen J et al (1999) Human growth differentiation factor 9 (GDF-9) and its novel homolog GDF-9B are expressed in oocytes during early folliculogenesis. J Clin Endocrinol Metab 84(8):2744–2750

    CAS  Google Scholar 

  102. Shimasaki S et al (2004) The bone morphogenetic protein system in mammalian reproduction. Endocr Rev 25(1):72–101

    Article  CAS  PubMed  Google Scholar 

  103. Moore RK, Erickson GF, Shimasaki S (2004) Are BMP-15 and GDF-9 primary determinants of ovulation quota in mammals? Trends Endocrinol Metab 15(8):356–361

    Article  CAS  PubMed  Google Scholar 

  104. Otsuka F et al (2001) Follistatin inhibits the function of the oocyte-derived factor BMP-15. Biochem Biophys Res Commun 289(5):961–966

    Article  CAS  PubMed  Google Scholar 

  105. Otsuka F et al (2001) Bone morphogenetic protein-15 inhibits follicle-stimulating hormone (FSH) action by suppressing FSH receptor expression. J Biol Chem 276(14):11387–11392

    Article  CAS  PubMed  Google Scholar 

  106. Zhao SY et al (2010) Expression of growth differentiation factor-9 and bone morphogenetic protein-15 in oocytes and cumulus granulosa cells of patients with polycystic ovary syndrome. Fertil Steril 94(1):261–267

    Article  CAS  PubMed  Google Scholar 

  107. Hussein TS et al (2005) Oocytes prevent cumulus cell apoptosis by maintaining a morphogenic paracrine gradient of bone morphogenetic proteins. J Cell Sci 118(Pt 22):5257–5268

    Article  CAS  PubMed  Google Scholar 

  108. Khalaf M et al (2013) BMP system expression in GCs from polycystic ovary syndrome women and the in vitro effects of BMP4, BMP6, and BMP7 on GC steroidogenesis. Eur J Endocrinol 168(3):437–444

    Article  CAS  PubMed  Google Scholar 

  109. van Houten EL, Visser JA (2014) Mouse models to study polycystic ovary syndrome: a possible link between metabolism and ovarian function? Reprod Biol 14(1):32–43

    Article  PubMed  Google Scholar 

  110. Bardoni B et al (1994) A dosage sensitive locus at chromosome Xp21 is involved in male to female sex reversal. Nat Genet 7(4):497–501

    Article  CAS  PubMed  Google Scholar 

  111. Zanaria E et al (1994) An unusual member of the nuclear hormone receptor superfamily responsible for X-linked adrenal hypoplasia congenita. Nature 372(6507):635–641

    Article  CAS  PubMed  Google Scholar 

  112. Swain A et al (1998) Dax1 antagonizes Sry action in mammalian sex determination. Nature 391(6669):761–767

    Article  CAS  PubMed  Google Scholar 

  113. Chen S et al (2016) nr0b1 (DAX1) mutation in zebrafish causes female-to-male sex reversal through abnormal gonadal proliferation and differentiation. Mol Cell Endocrinol 433:105–116

    Article  CAS  PubMed  Google Scholar 

  114. Kim Y et al (2006) Fgf9 and Wnt4 act as antagonistic signals to regulate mammalian sex determination. PLoS Biol 4(6):e187

    Article  PubMed  PubMed Central  Google Scholar 

  115. Abozaid H, Wessels S, Hörstgen-Schwark G (2012) Elevated temperature applied during gonadal transformation leads to male bias in zebrafish (Danio rerio). Sex Dev 6(4):201–209

    Article  CAS  PubMed  Google Scholar 

  116. Uchida D et al (2004) An aromatase inhibitor or high water temperature induce oocyte apoptosis and depletion of P450 aromatase activity in the gonads of genetic female zebrafish during sex-reversal. Comp Biochem Physiol A Mol Integr Physiol 137(1):11–20

    Article  PubMed  Google Scholar 

  117. Brown AR et al (2015) Climate change and pollution speed declines in zebrafish populations. Proc Natl Acad Sci U S A 112(11):E1237–E1246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Ribas L et al (2017) Treatment with a DNA methyltransferase inhibitor feminizes zebrafish and induces long-term expression changes in the gonads. Epigenet. Chromatin 10(1):59

    Article  Google Scholar 

  119. Wang X et al (2021) The role of DNA methylation reprogramming during sex determination and transition in zebrafish. Genom Proteom Bioinform

  120. Santos D, Luzio A, Coimbra AM (2017) Zebrafish sex differentiation and gonad development: a review on the impact of environmental factors. Aquat Toxicol 191:141–163

    Article  CAS  PubMed  Google Scholar 

  121. Shang EH, Yu RM, Wu RS (2006) Hypoxia affects sex differentiation and development, leading to a male-dominated population in zebrafish (Danio rerio). Environ Sci Technol 40(9):3118–3122

    Article  CAS  PubMed  Google Scholar 

  122. Lo KH et al (2011) Hypoxia impairs primordial germ cell migration in zebrafish (Danio rerio) embryos. PLoS ONE 6(9):e24540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Hazlerigg CR et al (2012) Density-dependent processes in the life history of fishes: evidence from laboratory populations of zebrafish Danio rerio. PLoS ONE 7(5):e37550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lawrence C, Ebersole JP, Kesseli RV (2008) Rapid growth and out-crossing promote female development in zebrafish (Danio rerio). Environ Biol Fish 81(2):239–246

    Article  Google Scholar 

  125. Ribas L et al (2017) Appropriate rearing density in domesticated zebrafish to avoid masculinization: links with the stress response. J Exp Biol 220(Pt 6):1056–1064

    PubMed  Google Scholar 

  126. Morthorst JE, Holbech H, Bjerregaard P (2010) Trenbolone causes irreversible masculinization of zebrafish at environmentally relevant concentrations. Aquat Toxicol 98(4):336–343

    Article  CAS  PubMed  Google Scholar 

  127. Chen J et al (2015) Reproductive toxicity of low level bisphenol A exposures in a two-generation zebrafish assay: evidence of male-specific effects. Aquat Toxicol 169:204–214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Nakari T, Erkomaa K (2003) Effects of phytosterols on zebrafish reproduction in multigeneration test. Environ Pollut 123(2):267–273

    Article  CAS  PubMed  Google Scholar 

  129. Lyko F (2018) The DNA methyltransferase family: a versatile toolkit for epigenetic regulation. Nat Rev Genet 19(2):81–92

    Article  CAS  PubMed  Google Scholar 

  130. Estève PO et al (2009) Regulation of DNMT1 stability through SET7-mediated lysine methylation in mammalian cells. Proc Natl Acad Sci U S A 106(13):5076–5081

    Article  PubMed  PubMed Central  Google Scholar 

  131. Estève PO et al (2011) A methylation and phosphorylation switch between an adjacent lysine and serine determines human DNMT1 stability. Nat Struct Mol Biol 18(1):42–48

    Article  PubMed  Google Scholar 

  132. Di Ruscio A et al (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503(7476):371–376

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to the NIH for supporting our research, to CCMS for animal care and husbandry, and to our colleagues for thoughtful discussions.

Funding

Research on sex determination in the Marlow lab is supported by NIHR01 GM133896 to FLM.

Author information

Authors and Affiliations

Authors

Contributions

DA and FLM wrote this review article and generated all figures.

Corresponding author

Correspondence to Florence L. Marlow.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethics approval and consent to participate

All researches in the Marlow lab are reviewed and approved by the Institutional Animal Care and Use Committee and veterinary and husbandry are overseen by the Center for Comparative Medicine.

Consent for publication

All authors consent to publication of this review article.

Data availability

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aharon, D., Marlow, F.L. Sexual determination in zebrafish. Cell. Mol. Life Sci. 79, 8 (2022). https://doi.org/10.1007/s00018-021-04066-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00018-021-04066-4

Keywords.

Navigation