Skip to main content

Advertisement

Log in

Tumor cells express pauci- and oligomannosidic N-glycans in glycoproteins recognized by the mannose receptor (CD206)

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The macrophage mannose receptor (CD206, MR) is an endocytic lectin receptor which plays an important role in homeostasis and innate immunity, however, the endogenous glycan and glycoprotein ligands recognized by its C-type lectin domains (CTLD) have not been well studied. Here we used the murine MR CTLD4–7 coupled to the Fc-portion of human IgG (MR-Fc) to investigate the MR glycan and glycoprotein recognition. We probed 16 different cancer and control tissues using the MR-Fc, and observed cell- and tissue-specific binding with varying intensity. All cancer tissues and several control tissues exhibited MR-Fc ligands, intracellular and/or surface-located. We further confirmed the presence of ligands on the surface of cancer cells by flow cytometry. To characterize the fine specificity of the MR for glycans, we screened a panel of glycan microarrays. Remarkably, the results indicate that the CTLD4-7 of the MR is highly selective for specific types of pauci- and oligomannose N-glycans among hundreds of glycans tested. As lung cancer tissue and the lung cancer cell line A549 showed intense MR-Fc binding, we further investigated the MR glycoprotein ligands in those cells by immunoprecipitation and glycoproteomic analysis. All enriched glycoproteins, of which 42 were identified, contained pauci- or oligomannose N-glycans, confirming the microarray results. Our study demonstrates that the MR CTLD4-7 is highly selective for pauci- and oligomannosidic N-glycans, structures that are often elevated in tumor cells, and suggest a potential role for the MR in tumor biology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data

The MS proteomics data have been deposited to the ProteomeXchange Consortium (http://proteomecentral.proteomexchange.org) via the PRIDE partner repository [69] with the dataset identifier PXD022546. Glycan microarray data are available in supplementary material and at the NCFG website (https://ncfg.hms.harvard.edu/ncfg-data).

Abbreviations

AEAB:

2-Amino-N-(2-aminoethyl)-benzamide

ACN:

Acetonitrile

CFG:

Consortium for functional glycomics

CR domain:

Cysteine-rich domain

CTLD:

C-type lectin domain

FA:

Formic acid

Fab:

Fragment antigen binding

Fuc:

Fucose

Gal:

Galactose

GalNAc:

N-acetylgalactosamine

Glc:

Glucose

GlcNAc:

N-acetylglucosamine

Hex:

Hexose

HexNAc:

N-acetylhexosamine

HI FBS:

Heat-inactivated fetal bovine serum

IgG:

Immunoglobulin G

LC–MS:

Liquid chromatography-mass spectrometry

mAb100:

Monoclonal antibody 100-4G11-A

Man:

Mannose

MR-Fc:

Mannose receptor-fragment crystallizable

MR, CD206:

Mannose receptor

NeuAc:

N-acetylneuraminic acid

NSCLC:

Non-small cell lung cancer

PaTu-T:

Pa-Tu-8988 T cells

PSG:

Penicillin/Streptomycin/Glutamine

TAM:

Tumor-associated macrophages

References

  1. Martinez-Pomares L (2012) The mannose receptor. J Leukoc Biol 92(6):1177–1186. https://doi.org/10.1189/jlb.0512231

    Article  CAS  PubMed  Google Scholar 

  2. Fiete DJ, Beranek MC, Baenziger JU (1998) A cysteine-rich domain of the “mannose” receptor mediates GalNAc-4-SO4 binding. Proc Natl Acad Sci 95(5):2089–2093. https://doi.org/10.1073/pnas.95.5.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Leteux C, Chai W, Loveless RW, Yuen C-T, Uhlin-Hansen L, Combarnous Y, Jankovic M, Maric SC, Misulovin Z, Nussenzweig MC, Feizi T (2000) The cysteine-rich domain of the macrophage mannose receptor is a multispecific lectin that recognizes chondroitin sulfates a and B and sulfated oligosaccharides of blood group lewisa and lewisx types in addition to the sulfated N-glycans of lutropin. J Exp Med 191(7):1117–1126. https://doi.org/10.1084/jem.191.7.1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Liu Y, Chirino AJ, Misulovin Z, Leteux C, Feizi T, Nussenzweig MC, Bjorkman PJ (2000) Crystal structure of the cysteine-rich domain of mannose receptor complexed with a sulfated carbohydrate ligand. J Exp Med 191(7):1105–1116. https://doi.org/10.1084/jem.191.7.1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Taylor ME, Bezouska K, Drickamer K (1992) Contribution to ligand binding by multiple carbohydrate-recognition domains in the macrophage mannose receptor. J Biol Chem 267(3):1719–1726

    Article  CAS  PubMed  Google Scholar 

  6. Taylor ME, Drickamer K (1993) Structural requirements for high affinity binding of complex ligands by the macrophage mannose receptor. J Biol Chem 268(1):399–404

    Article  CAS  PubMed  Google Scholar 

  7. Stahl PD, Rodman JS, Miller MJ, Schlesinger PH (1978) Evidence for receptor-mediated binding of glycoproteins, glycoconjugates, and lysosomal glycosidases by alveolar macrophages. Proc Natl Acad Sci 75(3):1399–1403. https://doi.org/10.1073/pnas.75.3.1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shepherd VL, Lee YC, Schlesinger PH, Stahl PD (1981) L-Fucose-terminated glycoconjugates are recognized by pinocytosis receptors on macrophages. Proc Natl Acad Sci USA 78(2):1019–1022. https://doi.org/10.1073/pnas.78.2.1019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zheng RB, Jégouzo SAF, Joe M, Bai Y, Tran H-A, Shen K, Saupe J, Xia L, Ahmed MF, Liu Y-H, Patil PS, Tripathi A, Hung S-C, Taylor ME, Lowary TL, Drickamer K (2017) Insights into interactions of mycobacteria with the host innate immune system from a novel array of synthetic mycobacterial glycans. ACS Chem Biol 12(12):2990–3002. https://doi.org/10.1021/acschembio.7b00797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. van Die I, Cummings RD (2017) The mannose receptor in regulation of helminth-mediated host immunity. Front Immunol 8:1677–1677. https://doi.org/10.3389/fimmu.2017.01677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chatterjee S, Lee LY, Kawahara R, Abrahams JL, Adamczyk B, Anugraham M, Ashwood C, Sumer-Bayraktar Z, Briggs MT, Chik JHL, Everest-Dass A, Förster S, Hinneburg H, Leite KRM, Loke I, Möginger U, Moh ESX, Nakano M, Recuero S, Sethi MK, Srougi M, Stavenhagen K, Venkatakrishnan V, Wongtrakul-Kish K, Diestel S, Hoffmann P, Karlsson NG, Kolarich D, Molloy MP, Muders MH, Oehler MK, Packer NH, Palmisano G, Thaysen-Andersen M (2019) Protein paucimannosylation is an enriched N-glycosylation signature of human cancers. Proteomics 19(21–22):1900010. https://doi.org/10.1002/pmic.201900010

    Article  CAS  Google Scholar 

  12. Loke I, Kolarich D, Packer NH, Thaysen-Andersen M (2016) Emerging roles of protein mannosylation in inflammation and infection. Mol Aspects Med 51:31–55. https://doi.org/10.1016/j.mam.2016.04.004

    Article  CAS  PubMed  Google Scholar 

  13. RodrÍguez E, Schetters STT, van Kooyk Y (2018) The tumour glyco-code as a novel immune checkpoint for immunotherapy. Nat Rev Immunol 18(3):204–211. https://doi.org/10.1038/nri.2018.3

    Article  CAS  PubMed  Google Scholar 

  14. Chieppa M, Bianchi G, Doni A, Del Prete A, Sironi M, Laskarin G, Monti P, Piemonti L, Biondi A, Mantovani A, Introna M, Allavena P (2003) Cross-linking of the mannose receptor on monocyte-derived dendritic cells activates an anti-inflammatory immunosuppressive program. J Immunol 171(9):4552–4560. https://doi.org/10.4049/jimmunol.171.9.4552

    Article  CAS  PubMed  Google Scholar 

  15. Wynn TA, Chawla A, Pollard JW (2013) Macrophage biology in development, homeostasis and disease. Nature 496(7446):445–455. https://doi.org/10.1038/nature12034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Cao J, Liu J, Xu R, Zhu X, Zhao X, Qian B-Z (2017) Prognostic role of tumour-associated macrophages and macrophage scavenger receptor 1 in prostate cancer: a systematic review and meta-analysis. Oncotarget 8(47):83261–83269. https://doi.org/10.18632/oncotarget.18743

    Article  PubMed  PubMed Central  Google Scholar 

  17. Mosser DM, Edwards JP (2008) Exploring the full spectrum of macrophage activation. Nat Rev Immunol 8(12):958–969. https://doi.org/10.1038/nri2448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chanmee T, Ontong P, Konno K, Itano N (2014) Tumor-associated macrophages as major players in the tumor microenvironment. Cancers 6(3):1670–1690. https://doi.org/10.3390/cancers6031670

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sica A, Schioppa T, Mantovani A, Allavena P (2006) Tumour-associated macrophages are a distinct M2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur J Cancer 42(6):717–727. https://doi.org/10.1016/j.ejca.2006.01.003

    Article  CAS  PubMed  Google Scholar 

  20. Wu P, Wu D, Zhao L, Huang L, Chen G, Shen G, Huang J, Chai Y (2016) Inverse role of distinct subsets and distribution of macrophage in lung cancer prognosis: a meta-analysis. Oncotarget 7(26):40451–40460. https://doi.org/10.18632/oncotarget.9625

    Article  PubMed  PubMed Central  Google Scholar 

  21. Stein M, Keshav S, Harris N, Gordon S (1992) Interleukin 4 potently enhances murine macrophage mannose receptor activity: a marker of alternative immunologic macrophage activation. J Exp Med 176(1):287–292. https://doi.org/10.1084/jem.176.1.287

    Article  CAS  PubMed  Google Scholar 

  22. Coffelt SB, Tal AO, Scholz A, De Palma M, Patel S, Urbich C, Biswas SK, Murdoch C, Plate KH, Reiss Y, Lewis CE (2010) Angiopoietin-2 regulates gene expression in TIE2-expressing monocytes and augments their inherent proangiogenic functions. Can Res 70(13):5270–5280. https://doi.org/10.1158/0008-5472.can-10-0012

    Article  CAS  Google Scholar 

  23. Schlesinger PH, Doebber TW, Mandell BF, White R, DeSchryver C, Rodman JS, Miller MJ, Stahl P (1978) Plasma clearance of glycoproteins with terminal mannose and N-acetylglucosamine by liver non-parenchymal cells. Studies with beta-glucuronidase, N-acetyl-beta-D-glucosaminidase, ribonuclease B and agalacto-orosomucoid. Biochem J 176 (1):103–109. https://doi.org/10.1042/bj1760103

  24. Shepherd VL, Hoidal JR (1990) Clearance of neutrophil-derived myeloperoxidase by the macrophage mannose receptor. Am J Respir Cell Mol Biol 2(4):335–340. https://doi.org/10.1165/ajrcmb/2.4.335

    Article  CAS  PubMed  Google Scholar 

  25. Smedsrodl B, Einarsson M, Pertoftl H (1988) Tissue plasminogen activator is endocytosed by mannose and galactose receptor of rat liver cells. Thromb Haemost 59(3):480–484

    Article  Google Scholar 

  26. Smedsrød B, Melkko J, Risteli L, Risteli J (1990) Circulating C-terminal propeptide of type I procollagen is cleared mainly via the mannose receptor in liver endothelial cells. Biochem J 271(2):345–350. https://doi.org/10.1042/bj2710345

    Article  PubMed  PubMed Central  Google Scholar 

  27. Linehan SA, Martinez-Pomares L, da Silva RP, Gordon S (2001) Endogenous ligands of carbohydrate recognition domains of the mannose receptor in murine macrophages, endothelial cells and secretory cells; potential relevance to inflammation and immunity. Eur J Immunol 31:1857–1866

    Article  CAS  PubMed  Google Scholar 

  28. Elvevold K, Simon-Santamaria J, Hasvold H, McCourt P, Smedsrød B, Sørensen KK (2008) Liver sinusoidal endothelial cells depend on mannose receptor-mediated recruitment of lysosomal enzymes for normal degradation capacity. Hepatology 48(6):2007–2015

    Article  CAS  PubMed  Google Scholar 

  29. Blixt O, Head S, Mondala T, Scanlan C, Huflejt ME, Alvarez R, Bryan MC, Fazio F, Calarese D, Stevens J, Razi N, Stevens DJ, Skehel JJ, van Die I, Burton DR, Wilson IA, Cummings R, Bovin N, Wong C-H, Paulson JC (2004) Printed covalent glycan array for ligand profiling of diverse glycan binding proteins. Proc Natl Acad Sci USA 101(49):17033–17038. https://doi.org/10.1073/pnas.0407902101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gao C, Stavenhagen K, Eckmair B, McKitrick TR, Mehta AY, Matsumoto Y, McQuillan AM, Hanes MS, Eris D, Baker KJ, Jia N, Wei M, Heimburg-Molinaro J, Ernst B, Cummings RD (2021) Differential recognition of oligomannose isomers by glycan-binding proteins involved in innate and adaptive immunity. In press at Sci Adv (publication date: June 9, 2021)

  31. Song X, Heimburg-Molinaro J, Dahms NM, Smith DF, Cummings RD (2012) Preparation of a mannose-6-phosphate glycan microarray through fluorescent derivatization, phosphorylation, and immobilization of natural high-mannose N-glycans and application in ligand identification of P-type lectins. Methods Mol Biol (Clifton, NJ) 808:137–148. https://doi.org/10.1007/978-1-61779-373-8_9

    Article  CAS  Google Scholar 

  32. Stowell SR, Arthur CM, McBride R, Berger O, Razi N, Heimburg-Molinaro J, Rodrigues LC, Gourdine J-P, Noll AJ, von Gunten S, Smith DF, Knirel YA, Paulson JC, Cummings RD (2014) Microbial glycan microarrays define key features of host-microbial interactions. Nat Chem Biol 10(6):470–476. https://doi.org/10.1038/nchembio.1525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mickum ML, Prasanphanich NS, Song X, Dorabawila N, Mandalasi M, Lasanajak Y, Luyai A, Secor WE, Wilkins PP, Van Die I, Smith DF, Nyame AK, Cummings RD, Rivera-Marrero CA (2016) Identification of antigenic glycans from schistosoma mansoni by using a shotgun egg glycan microarray. Infect Immun 84(5):1371–1386. https://doi.org/10.1128/IAI.01349-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Luyai AE, Heimburg-Molinaro J, Salinger Prasanphanich N, Mickum ML, Lasanajak Y, Song X, Nyame AK, Wilkins PP, Rivera-Marrero CA, Smith DF, van Die I, Secor WE, Cummings RD (2014) Differential expression of anti-glycan antibodies in schistosome-infected humans, rhesus monkeys and mice. Glycobiology 24(7):602–618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. van Remoortere A, Bank CMC, Nyame AK, Cummings RD, Deelder AM, van Die I (2003) Schistosoma mansoni–infected mice produce antibodies that cross-react with plant, insect, and mammalian glycoproteins and recognize the truncated biantennaryN-glycan Man3GlcNAc2-R. Glycobiology 13(3):217–225. https://doi.org/10.1093/glycob/cwg025

    Article  CAS  PubMed  Google Scholar 

  36. Drummond ES, Nayak S, Ueberheide B, Wisniewski T (2015) Proteomic analysis of neurons microdissected from formalin-fixed, paraffin-embedded Alzheimer’s disease brain tissue. Sci Rep 5(1):15456. https://doi.org/10.1038/srep15456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch S, Rueden C, Saalfeld S, Schmid B, Tinevez J-Y, White DJ, Hartenstein V, Eliceiri K, Tomancak P, Cardona A (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9(7):676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  38. Fedchenko N, Reifenrath J (2014) Different approaches for interpretation and reporting of immunohistochemistry analysis results in the bone tissue - a review. Diagn Pathol 9:221–221. https://doi.org/10.1186/s13000-014-0221-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Plomp R, Hensbergen PJ, Rombouts Y, Zauner G, Dragan I, Koeleman CAM, Deelder AM, Wuhrer M (2014) Site-specific N-glycosylation analysis of human immunoglobulin E. J Proteome Res 13(2):536–546. https://doi.org/10.1021/pr400714w

    Article  CAS  PubMed  Google Scholar 

  40. Zeng J, Eljalby M, Aryal RP, Lehoux S, Stavenhagen K, Kudelka MR, Wang Y, Wang J, Ju T, von Andrian UH, Cummings RD (2020) Cosmc controls B cell homing. Nat Commun 11:3990. https://doi.org/10.1038/s41467-020-17765-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Halim A, Westerlind U, Pett C, Schorlemer M, Rüetschi U, Brinkmalm G, Sihlbom C, Lengqvist J, Larson G, Nilsson J (2014) Assignment of saccharide identities through analysis of oxonium ion fragmentation profiles in LC–MS/MS of glycopeptides. J Proteome Res 13(12):6024–6032. https://doi.org/10.1021/pr500898r

    Article  CAS  PubMed  Google Scholar 

  42. Jia N, Byrd-Leotis L, Matsumoto Y, Gao C, Wein AN, Lobby JL, Kohlmeier JE, Steinhauer DA, Cummings RD (2020) The human lung glycome reveals novel glycan ligands for influenza A virus. Sci Rep 10(1):5320–5320. https://doi.org/10.1038/s41598-020-62074-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Dahms NM, Lobel P, Kornfeld S (1989) Mannose 6-phosphate receptors and lysosomal enzyme targeting. J Biol Chem 264(21):12115–12118

    Article  CAS  PubMed  Google Scholar 

  44. Sun P, Sleat DE, Lecocq M, Hayman AR, Jadot M, Lobel P (2008) Acid phosphatase 5 is responsible for removing the mannose 6-phosphate recognition marker from lysosomal proteins. Proc Natl Acad Sci 105(43):16590–16595. https://doi.org/10.1073/pnas.0807472105

    Article  PubMed  PubMed Central  Google Scholar 

  45. Fanibunda SE, Modi DN, Gokral JS, Bandivdekar AH (2011) HIV gp120 binds to mannose receptor on vaginal epithelial cells and induces production of matrix metalloproteinases. PLoS ONE 6(11):e28014–e28014. https://doi.org/10.1371/journal.pone.0028014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shepherd VL, Tarnowski BI, McLaughlin BJ (1991) Isolation and characterization of a mannose receptor from human pigment epithelium. Invest Ophthalmol Vis Sci 32(6):1779–1784

    CAS  PubMed  Google Scholar 

  47. Taylor PR, Gordon S, Martinez-Pomares L (2005) The mannose receptor: linking homeostasis and immunity through sugar recognition. Trends Immunol 26(2):104–110. https://doi.org/10.1016/j.it.2004.12.001

    Article  CAS  PubMed  Google Scholar 

  48. Waniwan JT, Chen Y-J, Capangpangan R, Weng S-H, Chen Y-J (2018) Glycoproteomic alterations in drug-resistant nonsmall cell lung cancer cells revealed by lectin magnetic nanoprobe-based mass spectrometry. J Proteome Res 17(11):3761–3773. https://doi.org/10.1021/acs.jproteome.8b00433

    Article  CAS  PubMed  Google Scholar 

  49. Hu Y, Shah P, Clark DJ, Ao M, Zhang H (2018) Reanalysis of global proteomic and phosphoproteomic data identified a large number of glycopeptides. Anal Chem 90(13):8065–8071. https://doi.org/10.1021/acs.analchem.8b01137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Thaysen-Andersen M, Venkatakrishnan V, Loke I, Laurini C, Diestel S, Parker BL, Packer NH (2015) Human neutrophils secrete bioactive paucimannosidic proteins from azurophilic granules into pathogen-infected sputum. J Biol Chem 290(14):8789–8802. https://doi.org/10.1074/jbc.M114.631622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Uhlén M, Björling E, Agaton C, Szigyarto CA-K, Amini B, Andersen E, Andersson A-C, Angelidou P, Asplund A, Asplund C, Berglund L, Bergström K, Brumer H, Cerjan D, Ekström M, Elobeid A, Eriksson C, Fagerberg L, Falk R, Fall J, Forsberg M, Björklund MG, Gumbel K, Halimi A, Hallin I, Hamsten C, Hansson M, Hedhammar M, Hercules G, Kampf C, Larsson K, Lindskog M, Lodewyckx W, Lund J, Lundeberg J, Magnusson K, Malm E, Nilsson P, Ödling J, Oksvold P, Olsson I, Öster E, Ottosson J, Paavilainen L, Persson A, Rimini R, Rockberg J, Runeson M, Sivertsson Å, Sköllermo A, Steen J, Stenvall M, Sterky F, Strömberg S, Sundberg M, Tegel H, Tourle S, Wahlund E, Waldén A, Wan J, Wernérus H, Westberg J, Wester K, Wrethagen U, Xu LL, Hober S, Pontén F (2005) A Human Protein Atlas for Normal and Cancer Tissues Based on Antibody Proteomics. Mol Cell Proteom 4(12):1920–1932. https://doi.org/10.1074/mcp.M500279-MCP200

    Article  CAS  Google Scholar 

  52. Uhlén M, Fagerberg L, Hallström BM, Lindskog C, Oksvold P, Mardinoglu A, Sivertsson Å, Kampf C, Sjöstedt E, Asplund A, Olsson I, Edlund K, Lundberg E, Navani S, Szigyarto CA-K, Odeberg J, Djureinovic D, Takanen JO, Hober S, Alm T, Edqvist P-H, Berling H, Tegel H, Mulder J, Rockberg J, Nilsson P, Schwenk JM, Hamsten M, von Feilitzen K, Forsberg M, Persson L, Johansson F, Zwahlen M, von Heijne G, Nielsen J, Pontén F (2015) Tissue-based map of the human proteome. Science 347(6220):1260419. https://doi.org/10.1126/science.1260419

    Article  CAS  PubMed  Google Scholar 

  53. Janssen WJ, Stefanski AL, Bochner BS, Evans CM (2016) Control of lung defence by mucins and macrophages: ancient defence mechanisms with modern functions. Eur Respir J 48(4):1201–1214. https://doi.org/10.1183/13993003.00120-2015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Mills CD (2012) M1 and M2 macrophages: oracles of health and disease. Crit Rev Immunol 32(6):463–488. https://doi.org/10.1615/critrevimmunol.v32.i6.10

    Article  CAS  PubMed  Google Scholar 

  55. Qian B-Z, Pollard JW (2010) Macrophage diversity enhances tumor progression and metastasis. Cell 141(1):39–51. https://doi.org/10.1016/j.cell.2010.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Pei X-B, Wu X-Z, Yi F-S, Zhai K, Shi H-Z (2019) Diagnostic value of CD206(+)CD14(+) macrophages in diagnosis of lung cancer originated malignant pleural effusion. J Thorac Dis 11(7):2730–2736. https://doi.org/10.21037/jtd.2019.06.44

    Article  PubMed  PubMed Central  Google Scholar 

  57. Allavena P, Chieppa M, Bianchi G, Solinas G, Fabbri M, Laskarin G, Mantovani A (2010) Engagement of the mannose receptor by tumoral mucins activates an immune suppressive phenotype in human tumor-associated macrophages. Clin Dev Immunol 2010:547179. https://doi.org/10.1155/2010/547179

    Article  CAS  PubMed  Google Scholar 

  58. Radcliffe CM, Arnold JN, Suter DM, Wormald MR, Harvey DJ, Royle L, Mimura Y, Kimura Y, Sim RB, Inogès S, Rodriguez-Calvillo M, Zabalegui N, de Cerio AL-D, Potter KN, Mockridge CI, Dwek RA, Bendandi M, Rudd PM, Stevenson FK (2007) Human Follicular Lymphoma Cells Contain Oligomannose Glycans in the Antigen-binding Site of the B-cell Receptor. J Biol Chem 282(10):7405–7415. https://doi.org/10.1074/jbc.M602690200

    Article  CAS  PubMed  Google Scholar 

  59. Coelho V, Krysov S, Ghaemmaghami AM, Emara M, Potter KN, Johnson P, Packham G, Martinez-Pomares L, Stevenson FK (2010) Glycosylation of surface Ig creates a functional bridge between human follicular lymphoma and microenvironmental lectins. Proc Natl Acad Sci 107(43):18587–18592. https://doi.org/10.1073/pnas.1009388107

    Article  PubMed  PubMed Central  Google Scholar 

  60. Blumenthal RD, Leon E, Hansen HJ, Goldenberg DM (2007) Expression patterns of CEACAM5 and CEACAM6 in primary and metastatic cancers. BMC Cancer 7:2–2. https://doi.org/10.1186/1471-2407-7-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Aqil M, Elseth KM, Arjunakani A, Nebres P, Amegashie CP, Thanki DH, Desai PB, Radosevich JA (2015) A549 cells adapted to high nitric oxide show reduced surface CEACAM expression and altered adhesion and migration properties. Tumor Biol 36(3):1871–1879. https://doi.org/10.1007/s13277-014-2789-9

    Article  CAS  Google Scholar 

  62. Beauchemin N, Arabzadeh A (2013) Carcinoembryonic antigen-related cell adhesion molecules (CEACAMs) in cancer progression and metastasis. Cancer Metastasis Rev 32(3):643–671. https://doi.org/10.1007/s10555-013-9444-6

    Article  CAS  PubMed  Google Scholar 

  63. Johnson B, Mahadevan D (2015) Emerging role and targeting of carcinoembryonic antigen-related cell adhesion molecule 6 (CEACAM6) in human malignancies. Clin Cancer Drugs 2(2):100–111. https://doi.org/10.2174/2212697X02666150602215823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Thomas P, Forse RA, Bajenova O (2011) Carcinoembryonic antigen (CEA) and its receptor hnRNP M are mediators of metastasis and the inflammatory response in the liver. Clin Exp Metas 28(8):923–932. https://doi.org/10.1007/s10585-011-9419-3

    Article  CAS  Google Scholar 

  65. Yu C-J, Yang P-C, Shun C-T, Lee Y-C, Kuo S-H, Luh K-T (1996) Overexpression of MUC5 genes is associated with early post-operative metastasis in non-small-cell lung cancer. Int J Cancer 69(6):457–465. https://doi.org/10.1002/(sici)1097-0215(19961220)69:6%3c457::aid-ijc7%3e3.0.co;2-3

    Article  CAS  PubMed  Google Scholar 

  66. Gocheva V, Wang H-W, Gadea BB, Shree T, Hunter KE, Garfall AL, Berman T, Joyce JA (2010) IL-4 induces cathepsin protease activity in tumor-associated macrophages to promote cancer growth and invasion. Genes Dev 24(3):241–255. https://doi.org/10.1101/gad.1874010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Santamarı́a I, Velasco G, Pendás AM, Fueyo A, López-Otı́n C (1998) Cathepsin Z, a novel human cysteine proteinase with a short propeptide domain and a unique chromosomal location. J Biol Chem 273 (27):16816–16823. https://doi.org/10.1074/jbc.273.27.16816

  68. Alessandrini F, Pezzè L, Ciribilli Y (2017) LAMPs: shedding light on cancer biology. Semin Oncol 44(4):239–253. https://doi.org/10.1053/j.seminoncol.2017.10.013

    Article  CAS  PubMed  Google Scholar 

  69. Perez-Riverol Y, Csordas A, Bai J, Bernal-Llinares M, Hewapathirana S, Kundu DJ, Inuganti A, Griss J, Mayer G, Eisenacher M, Pérez E, Uszkoreit J, Pfeuffer J, Sachsenberg T, Yilmaz S, Tiwary S, Cox J, Audain E, Walzer M, Jarnuczak AF, Ternent T, Brazma A, Vizcaíno JA (2019) The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acid Res 47(D1):D442–D450. https://doi.org/10.1093/nar/gky1106

  70. Harvey DJ, Merry AH, Royle L, P. Campbell M, Dwek RA, Rudd PM, (2009) Proposal for a standard system for drawing structural diagrams of N- and O-linked carbohydrates and related compounds. Proteomics 9(15):3796–3801. https://doi.org/10.1002/pmic.200900096

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Luisa Martinez-Pomares for providing the MR-Fc DNA, Protein Metrics for providing us with a Byonic license for glycopeptide identification and Onur Dagliyan for taking images of the IHC tissue slides.

Funding

This work was supported by the Dutch Research Council (NWO)—Rubicon grant (680–50-1534) to KS and by NIH Grants P41GM103694 and R24GM137763 to RDC.

Author information

Authors and Affiliations

Authors

Contributions

KS, LCL and CG performed the experiments. AYM and JHM supported the microarray experiments and analysis. JNG assessed the tissue pathology. KS, IVD, RDC conceptionally designed the work and wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Richard D. Cummings.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stavenhagen, K., Laan, L.C., Gao, C. et al. Tumor cells express pauci- and oligomannosidic N-glycans in glycoproteins recognized by the mannose receptor (CD206). Cell. Mol. Life Sci. 78, 5569–5585 (2021). https://doi.org/10.1007/s00018-021-03863-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03863-1

Keywords

Navigation