Skip to main content
Log in

GAGA factor: a multifunctional pioneering chromatin protein

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The Drosophila GAGA factor (GAF) is a multifunctional protein implicated in nucleosome organization and remodeling, activation and repression of gene expression, long distance enhancer–promoter communication, higher order chromosome structure, and mitosis. This broad range of activities poses questions about how a single protein can perform so many seemingly different and unrelated functions. Current studies argue that GAF acts as a “pioneer” factor, generating nucleosome-free regions of chromatin for different classes of regulatory elements. The removal of nucleosomes from regulatory elements in turn enables other factors to bind to these elements and carry out their specialized functions. Consistent with this view, GAF associates with a collection of chromatin remodelers and also interacts with proteins implicated in different regulatory functions. In this review, we summarize the known activities of GAF and the functions of its protein partners.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

All relevant data are within the paper and its Supporting Information file.

References

  1. van Steensel B, Delrow J, Bussemaker HJ (2003) Genomewide analysis of Drosophila GAGA factor target genes reveals context-dependent DNA binding. Proc Natl Acad Sci USA 100(5):2580–2585. https://doi.org/10.1073/pnas.0438000100

    Article  CAS  PubMed  Google Scholar 

  2. Farkas G, Gausz J, Galloni M, Reuter G, Gyurkovics H, Karch F (1994) The Trithorax-like gene encodes the Drosophila GAGA factor. Nature 371(6500):806–808. https://doi.org/10.1038/371806a0

    Article  CAS  PubMed  Google Scholar 

  3. Biggin MD, Tjian R (1988) Transcription factors that activate the Ultrabithorax promoter in developmentally staged extracts. Cell 53(5):699–711

    Article  CAS  Google Scholar 

  4. Soeller WC, Poole SJ, Kornberg T (1988) In vitro transcription of the Drosophila engrailed gene. Genes Dev 2(1):68–81

    Article  CAS  Google Scholar 

  5. Granok H, Leibovitch BA, Shaffer CD, Elgin SC (1995) Chromatin. Ga-ga over GAGA factor. Curr Biol 5(3):238–241

    Article  CAS  Google Scholar 

  6. Wilkins RC, Lis JT (1997) Dynamics of potentiation and activation: GAGA factor and its role in heat shock gene regulation. Nucleic Acids Res 25(20):3963–3968. https://doi.org/10.1093/nar/25.20.3963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Fuda NJ, Guertin MJ, Sharma S, Danko CG, Martins AL, Siepel A, Lis JT (2015) GAGA factor maintains nucleosome-free regions and has a role in RNA polymerase II recruitment to promoters. PLoS Genet 11(3):e1005108. https://doi.org/10.1371/journal.pgen.1005108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Li J, Gilmour DS (2013) Distinct mechanisms of transcriptional pausing orchestrated by GAGA factor and M1BP, a novel transcription factor. EMBO J 32(13):1829–1841. https://doi.org/10.1038/emboj.2013.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Li J, Liu Y, Rhee HS, Ghosh SK, Bai L, Pugh BF, Gilmour DS (2013) Kinetic competition between elongation rate and binding of NELF controls promoter-proximal pausing. Mol Cell 50(5):711–722. https://doi.org/10.1016/j.molcel.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Kerrigan LA, Croston GE, Lira LM, Kadonaga JT (1991) Sequence-specific transcriptional antirepression of the Drosophila Kruppel gene by the GAGA factor. J Biol Chem 266(1):574–582

    Article  CAS  Google Scholar 

  11. Croston GE, Kerrigan LA, Lira LM, Marshak DR, Kadonaga JT (1991) Sequence-specific antirepression of histone H1-mediated inhibition of basal RNA polymerase II transcription. Science 251(4994):643–649. https://doi.org/10.1126/science.1899487

    Article  CAS  PubMed  Google Scholar 

  12. Tsukiyama T, Becker PB, Wu C (1994) ATP-dependent nucleosome disruption at a heat-shock promoter mediated by binding of GAGA transcription factor. Nature 367(6463):525–532. https://doi.org/10.1038/367525a0

    Article  CAS  PubMed  Google Scholar 

  13. Wall G, Varga-Weisz PD, Sandaltzopoulos R, Becker PB (1995) Chromatin remodeling by GAGA factor and heat shock factor at the hypersensitive Drosophila hsp26 promoter in vitro. EMBO J 14(8):1727–1736

    Article  CAS  Google Scholar 

  14. Okada M, Hirose S (1998) Chromatin remodeling mediated by Drosophila GAGA factor and ISWI activates fushi tarazu gene transcription in vitro. Mol Cell Biol 18(5):2455–2461

    Article  CAS  Google Scholar 

  15. Glaser RL, Thomas GH, Siegfried E, Elgin SC, Lis JT (1990) Optimal heat-induced expression of the Drosophila hsp26 gene requires a promoter sequence containing (CT)n.(GA)n repeats. J Mol Biol 211(4):751–761. https://doi.org/10.1016/0022-2836(90)90075-W

    Article  CAS  PubMed  Google Scholar 

  16. Lu Q, Wallrath LL, Allan BD, Glaser RL, Lis JT, Elgin SC (1992) Promoter sequence containing (CT)n.(GA)n repeats is critical for the formation of the DNase I hypersensitive sites in the Drosophila hsp26 gene. J Mol Biol 225(4):985–998. https://doi.org/10.1016/0022-2836(92)90099-6

    Article  CAS  PubMed  Google Scholar 

  17. Lu Q, Wallrath LL, Granok H, Elgin SC (1993) (CT)n (GA)n repeats and heat shock elements have distinct roles in chromatin structure and transcriptional activation of the Drosophila hsp26 gene. Mol Cell Biol 13(5):2802–2814. https://doi.org/10.1128/mcb.13.5.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Leibovitch BA, Lu Q, Benjamin LR, Liu Y, Gilmour DS, Elgin SC (2002) GAGA factor and the TFIID complex collaborate in generating an open chromatin structure at the Drosophila melanogaster hsp26 promoter. Mol Cell Biol 22(17):6148–6157

    Article  CAS  Google Scholar 

  19. Lu Q, Wallrath LL, Emanuel PA, Elgin SC, Gilmour DS (1994) Insensitivity of the present hsp26 chromatin structure to a TATA box mutation in Drosophila. J Biol Chem 269(22):15906–15911

    Article  CAS  Google Scholar 

  20. Lee H, Kraus KW, Wolfner MF, Lis JT (1992) DNA sequence requirements for generating paused polymerase at the start of hsp70. Genes Dev 6(2):284–295. https://doi.org/10.1101/gad.6.2.284

    Article  CAS  PubMed  Google Scholar 

  21. Li B, Weber JA, Chen Y, Greenleaf AL, Gilmour DS (1996) Analyses of promoter-proximal pausing by RNA polymerase II on the hsp70 heat shock gene promoter in a Drosophila nuclear extract. Mol Cell Biol 16(10):5433–5443. https://doi.org/10.1128/mcb.16.10.5433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shopland LS, Hirayoshi K, Fernandes M, Lis JT (1995) HSF access to heat shock elements in vivo depends critically on promoter architecture defined by GAGA factor, TFIID, and RNA polymerase II binding sites. Genes Dev 9(22):2756–2769. https://doi.org/10.1101/gad.9.22.2756

    Article  CAS  PubMed  Google Scholar 

  23. Boija A, Mahat DB, Zare A, Holmqvist PH, Philip P, Meyers DJ, Cole PA, Lis JT, Stenberg P, Mannervik M (2017) CBP regulates recruitment and release of promoter-proximal RNA polymerase II. Mol Cell 68(3):491-503 e495. https://doi.org/10.1016/j.molcel.2017.09.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Americo J, Whiteley M, Brown JL, Fujioka M, Jaynes JB, Kassis JA (2002) A complex array of DNA-binding proteins required for pairing-sensitive silencing by a polycomb group response element from the Drosophila engrailed gene. Genetics 160(4):1561–1571

    Article  CAS  Google Scholar 

  25. Busturia A, Lloyd A, Bejarano F, Zavortink M, Xin H, Sakonju S (2001) The MCP silencer of the Drosophila Abd-B gene requires both Pleiohomeotic and GAGA factor for the maintenance of repression. Development 128(11):2163–2173

    Article  CAS  Google Scholar 

  26. Hagstrom K, Muller M, Schedl P (1997) A polycomb and GAGA dependent silencer adjoins the Fab-7 boundary in the Drosophila bithorax complex. Genetics 146(4):1365–1380

    Article  CAS  Google Scholar 

  27. Hodgson JW, Argiropoulos B, Brock HW (2001) Site-specific recognition of a 70-base-pair element containing d(GA)(n) repeats mediates bithoraxoid polycomb group response element-dependent silencing. Mol Cell Biol 21(14):4528–4543. https://doi.org/10.1128/MCB.21.14.4528-4543.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Mishra RK, Mihaly J, Barges S, Spierer A, Karch F, Hagstrom K, Schweinsberg SE, Schedl P (2001) The iab-7 polycomb response element maps to a nucleosome-free region of chromatin and requires both GAGA and pleiohomeotic for silencing activity. Mol Cell Biol 21(4):1311–1318. https://doi.org/10.1128/MCB.21.4.1311-1318.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Poux S, Horard B, Sigrist CJ, Pirrotta V (2002) The Drosophila trithorax protein is a coactivator required to prevent re-establishment of polycomb silencing. Development 129(10):2483–2493

    Article  CAS  Google Scholar 

  30. Negre N, Hennetin J, Sun LV, Lavrov S, Bellis M, White KP, Cavalli G (2006) Chromosomal distribution of PcG proteins during Drosophila development. PLoS Biol 4(6):e170. https://doi.org/10.1371/journal.pbio.0040170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogiyama Y, Schuettengruber B, Papadopoulos GL, Chang JM, Cavalli G (2018) Polycomb-dependent chromatin looping contributes to gene silencing during Drosophila development. Mol Cell 71(1):73-88 e75. https://doi.org/10.1016/j.molcel.2018.05.032

    Article  CAS  PubMed  Google Scholar 

  32. Strutt H, Cavalli G, Paro R (1997) Co-localization of polycomb protein and GAGA factor on regulatory elements responsible for the maintenance of homeotic gene expression. EMBO J 16(12):3621–3632. https://doi.org/10.1093/emboj/16.12.3621

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Negre N, Brown CD, Shah PK, Kheradpour P, Morrison CA, Henikoff JG, Feng X, Ahmad K, Russell S, White RA, Stein L, Henikoff S, Kellis M, White KP (2010) A comprehensive map of insulator elements for the Drosophila genome. PLoS Genet 6(1):e1000814. https://doi.org/10.1371/journal.pgen.1000814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Belozerov VE, Majumder P, Shen P, Cai HN (2003) A novel boundary element may facilitate independent gene regulation in the Antennapedia complex of Drosophila. EMBO J 22(12):3113–3121. https://doi.org/10.1093/emboj/cdg297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kyrchanova O, Kurbidaeva A, Sabirov M, Postika N, Wolle D, Aoki T, Maksimenko O, Mogila V, Schedl P, Georgiev P (2018) The bithorax complex iab-7 polycomb response element has a novel role in the functioning of the Fab-7 chromatin boundary. PLoS Genet 14(8):e1007442. https://doi.org/10.1371/journal.pgen.1007442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohtsuki S, Levine M (1998) GAGA mediates the enhancer blocking activity of the eve promoter in the Drosophila embryo. Genes Dev 12(21):3325–3330

    Article  CAS  Google Scholar 

  37. Schweinsberg S, Hagstrom K, Gohl D, Schedl P, Kumar RP, Mishra R, Karch F (2004) The enhancer-blocking activity of the Fab-7 boundary from the Drosophila bithorax complex requires GAGA-factor-binding sites. Genetics 168(3):1371–1384. https://doi.org/10.1534/genetics.104.029561

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wolle D, Cleard F, Aoki T, Deshpande G, Schedl P, Karch F (2015) Functional requirements for fab-7 boundary activity in the bithorax complex. Mol Cell Biol 35(21):3739–3752. https://doi.org/10.1128/MCB.00456-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kvon EZ, Stampfel G, Yanez-Cuna JO, Dickson BJ, Stark A (2012) HOT regions function as patterned developmental enhancers and have a distinct cis-regulatory signature. Genes Dev 26(9):908–913. https://doi.org/10.1101/gad.188052.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Moshe A, Kaplan T (2017) Genome-wide search for Zelda-like chromatin signatures identifies GAF as a pioneer factor in early fly development. Epigenetics Chromatin 10(1):33. https://doi.org/10.1186/s13072-017-0141-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Zabidi MA, Arnold CD, Schernhuber K, Pagani M, Rath M, Frank O, Stark A (2015) Enhancer-core-promoter specificity separates developmental and housekeeping gene regulation. Nature 518(7540):556–559. https://doi.org/10.1038/nature13994

    Article  CAS  PubMed  Google Scholar 

  42. Bhat KM, Farkas G, Karch F, Gyurkovics H, Gausz J, Schedl P (1996) The GAGA factor is required in the early Drosophila embryo not only for transcriptional regulation but also for nuclear division. Development 122(4):1113–1124

    Article  CAS  Google Scholar 

  43. Raff JW, Kellum R, Alberts B (1994) The Drosophila GAGA transcription factor is associated with specific regions of heterochromatin throughout the cell cycle. EMBO J 13(24):5977–5983

    Article  CAS  Google Scholar 

  44. Liang HL, Nien CY, Liu HY, Metzstein MM, Kirov N, Rushlow C (2008) The zinc-finger protein Zelda is a key activator of the early zygotic genome in Drosophila. Nature 456(7220):400–403. https://doi.org/10.1038/nature07388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Staudt N, Fellert S, Chung HR, Jackle H, Vorbruggen G (2006) Mutations of the Drosophila zinc finger-encoding gene vielfaltig impair mitotic cell divisions and cause improper chromosome segregation. Mol Biol Cell 17(5):2356–2365. https://doi.org/10.1091/mbc.e05-11-1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Chen K, Johnston J, Shao W, Meier S, Staber C, Zeitlinger J (2013) A global change in RNA polymerase II pausing during the Drosophila midblastula transition. eLife 2:e00861. https://doi.org/10.7554/eLife.00861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tsai SY, Chang YL, Swamy KB, Chiang RL, Huang DH (2016) GAGA factor, a positive regulator of global gene expression, modulates transcriptional pausing and organization of upstream nucleosomes. Epigenetics Chromatin 9:32. https://doi.org/10.1186/s13072-016-0082-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang YV, Tang H, Gilmour DS (2005) Identification in vivo of different rate-limiting steps associated with transcriptional activators in the presence and absence of a GAGA element. Mol Cell Biol 25(9):3543–3552. https://doi.org/10.1128/MCB.25.9.3543-3552.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Blythe SA, Wieschaus EF (2015) Zygotic genome activation triggers the DNA replication checkpoint at the midblastula transition. Cell 160(6):1169–1181. https://doi.org/10.1016/j.cell.2015.01.050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schulz KN, Bondra ER, Moshe A, Villalta JE, Lieb JD, Kaplan T, McKay DJ, Harrison MM (2015) Zelda is differentially required for chromatin accessibility, transcription factor binding, and gene expression in the early Drosophila embryo. Genome Res 25(11):1715–1726. https://doi.org/10.1101/gr.192682.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gaskill MM, Gibson TJ, Larson ED, Harrison MM (2020) The pioneer factor GAF is essential for zygotic genome activation and chromatin accessibility in the early <em>Drosophila</em> embryo. bioRxiv:2020.2007.2015.204248. doi:https://doi.org/10.1101/2020.07.15.204248

  52. Lomaev D, Mikhailova A, Erokhin M, Shaposhnikov AV, Moresco JJ, Blokhina T, Wolle D, Aoki T, Ryabykh V, Yates JR 3rd, Shidlovskii YV, Georgiev P, Schedl P, Chetverina D (2017) The GAGA factor regulatory network: identification of GAGA factor associated proteins. PLoS ONE 12(3):e0173602. https://doi.org/10.1371/journal.pone.0173602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Benyajati C, Mueller L, Xu N, Pappano M, Gao J, Mosammaparast M, Conklin D, Granok H, Craig C, Elgin S (1997) Multiple isoforms of GAGA factor, a critical component of chromatin structure. Nucleic Acids Res 25(16):3345–3353

    Article  CAS  Google Scholar 

  54. Soeller WC, Oh CE, Kornberg TB (1993) Isolation of cDNAs encoding the Drosophila GAGA transcription factor. Mol Cell Biol 13(12):7961–7970

    Article  CAS  Google Scholar 

  55. Adkins NL, Hagerman TA, Georgel P (2006) GAGA protein: a multi-faceted transcription factor. Biochem Cell Biol = Biochimie et biologie cellulaire 84(4):559–567. https://doi.org/10.1139/o06-062

    Article  CAS  PubMed  Google Scholar 

  56. Wilkins RC, Lis JT (1998) GAGA factor binding to DNA via a single trinucleotide sequence element. Nucleic Acids Res 26(11):2672–2678. https://doi.org/10.1093/nar/26.11.2672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Omichinski JG, Pedone PV, Felsenfeld G, Gronenborn AM, Clore GM (1997) The solution structure of a specific GAGA factor-DNA complex reveals a modular binding mode. Nat Struct Biol 4(2):122–132. https://doi.org/10.1038/nsb0297-122

    Article  CAS  PubMed  Google Scholar 

  58. Pedone PV, Ghirlando R, Clore GM, Gronenborn AM, Felsenfeld G, Omichinski JG (1996) The single Cys2-His2 zinc finger domain of the GAGA protein flanked by basic residues is sufficient for high-affinity specific DNA binding. Proc Natl Acad Sci USA 93(7):2822–2826

    Article  CAS  Google Scholar 

  59. Espinas ML, Jimenez-Garcia E, Vaquero A, Canudas S, Bernues J, Azorin F (1999) The N-terminal POZ domain of GAGA mediates the formation of oligomers that bind DNA with high affinity and specificity. J Biolo Chem 274(23):16461–16469

    Article  CAS  Google Scholar 

  60. Katsani KR, Hajibagheri MA, Verrijzer CP (1999) Co-operative DNA binding by GAGA transcription factor requires the conserved BTB/POZ domain and reorganizes promoter topology. EMBO J 18(3):698–708. https://doi.org/10.1093/emboj/18.3.698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Bardwell VJ, Treisman R (1994) The POZ domain: a conserved protein-protein interaction motif. Genes Dev 8(14):1664–1677

    Article  CAS  Google Scholar 

  62. Bonchuk A, Denisov S, Georgiev P, Maksimenko O (2011) Drosophila BTB/POZ domains of “ttk group” can form multimers and selectively interact with each other. J Mol Biol 412(3):423–436. https://doi.org/10.1016/j.jmb.2011.07.052

    Article  CAS  PubMed  Google Scholar 

  63. Pagans S, Ortiz-Lombardia M, Espinas ML, Bernues J, Azorin F (2002) The Drosophila transcription factor tramtrack (TTK) interacts with Trithorax-like (GAGA) and represses GAGA-mediated activation. Nucleic Acids Res 30(20):4406–4413

    Article  CAS  Google Scholar 

  64. Shimojima T, Okada M, Nakayama T, Ueda H, Okawa K, Iwamatsu A, Handa H, Hirose S (2003) Drosophila FACT contributes to Hox gene expression through physical and functional interactions with GAGA factor. Genes Dev 17(13):1605–1616. https://doi.org/10.1101/gad.1086803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Xiao H, Sandaltzopoulos R, Wang HM, Hamiche A, Ranallo R, Lee KM, Fu D, Wu C (2001) Dual functions of largest NURF subunit NURF301 in nucleosome sliding and transcription factor interactions. Mol Cell 8(3):531–543

    Article  CAS  Google Scholar 

  66. Greenberg AJ, Schedl P (2001) GAGA factor isoforms have distinct but overlapping functions in vivo. Mol Cell Biol 21(24):8565–8574. https://doi.org/10.1128/MCB.21.24.8565-8574.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jackson SP, Tjian R (1988) O-glycosylation of eukaryotic transcription factors: implications for mechanisms of transcriptional regulation. Cell 55(1):125–133. https://doi.org/10.1016/0092-8674(88)90015-3

    Article  CAS  PubMed  Google Scholar 

  68. Bonet C, Fernandez I, Aran X, Bernues J, Giralt E, Azorin F (2005) The GAGA protein of Drosophila is phosphorylated by CK2. J Mol Biol 351(3):562–572. https://doi.org/10.1016/j.jmb.2005.06.039

    Article  CAS  PubMed  Google Scholar 

  69. Aran-Guiu X, Ortiz-Lombardia M, Oliveira E, Bonet Costa C, Odena MA, Bellido D, Bernues J (2010) Acetylation of GAGA factor modulates its interaction with DNA. Biochemistry 49(43):9140–9151. https://doi.org/10.1021/bi1004427

    Article  CAS  PubMed  Google Scholar 

  70. Gross DS, Garrard WT (1988) Nuclease hypersensitive sites in chromatin. Annu Rev Biochem 57:159–197. https://doi.org/10.1146/annurev.bi.57.070188.001111

    Article  CAS  PubMed  Google Scholar 

  71. Weisbrod S (1982) Active chromatin. Nature 297(5864):289–295. https://doi.org/10.1038/297289a0

    Article  CAS  PubMed  Google Scholar 

  72. Talbert PB, Henikoff S (2017) Histone variants on the move: substrates for chromatin dynamics. Nat Rev Mol Cell Biol 18(2):115–126. https://doi.org/10.1038/nrm.2016.148

    Article  CAS  PubMed  Google Scholar 

  73. Iwafuchi-Doi M, Zaret KS (2014) Pioneer transcription factors in cell reprogramming. Genes Dev 28(24):2679–2692. https://doi.org/10.1101/gad.253443.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hamm DC, Harrison MM (2018) Regulatory principles governing the maternal-to-zygotic transition: insights from Drosophila melanogaster. Open Biol 8(12):180183. https://doi.org/10.1098/rsob.180183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. McDaniel SL, Gibson TJ, Schulz KN, Fernandez Garcia M, Nevil M, Jain SU, Lewis PW, Zaret KS, Harrison MM (2019) Continued activity of the pioneer factor zelda is required to drive zygotic genome activation. Mol Cell 74(1):185-195 e184. https://doi.org/10.1016/j.molcel.2019.01.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Tsukiyama T, Wu C (1995) Purification and properties of an ATP-dependent nucleosome remodeling factor. Cell 83(6):1011–1020

    Article  CAS  Google Scholar 

  77. Tsukiyama T, Daniel C, Tamkun J, Wu C (1995) ISWI, a member of the SWI2/SNF2 ATPase family, encodes the 140 kDa subunit of the nucleosome remodeling factor. Cell 83(6):1021–1026

    Article  CAS  Google Scholar 

  78. Ito T, Bulger M, Pazin MJ, Kobayashi R, Kadonaga JT (1997) ACF, an ISWI-containing and ATP-utilizing chromatin assembly and remodeling factor. Cell 90(1):145–155

    Article  CAS  Google Scholar 

  79. Emelyanov AV, Vershilova E, Ignatyeva MA, Pokrovsky DK, Lu X, Konev AY, Fyodorov DV (2012) Identification and characterization of ToRC, a novel ISWI-containing ATP-dependent chromatin assembly complex. Genes Dev 26(6):603–614. https://doi.org/10.1101/gad.180604.111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Chalkley GE, Moshkin YM, Langenberg K, Bezstarosti K, Blastyak A, Gyurkovics H, Demmers JA, Verrijzer CP (2008) The transcriptional coactivator SAYP is a trithorax group signature subunit of the PBAP chromatin remodeling complex. Mol Cell Biol 28(9):2920–2929. https://doi.org/10.1128/MCB.02217-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mohrmann L, Langenberg K, Krijgsveld J, Kal AJ, Heck AJ, Verrijzer CP (2004) Differential targeting of two distinct SWI/SNF-related Drosophila chromatin-remodeling complexes. Mol Cell Biol 24(8):3077–3088

    Article  CAS  Google Scholar 

  82. Nakayama T, Shimojima T, Hirose S (2012) The PBAP remodeling complex is required for histone H3.3 replacement at chromatin boundaries and for boundary functions. Development 139(24):4582–4590. https://doi.org/10.1242/dev.083246

    Article  CAS  PubMed  Google Scholar 

  83. Judd J, Duarte FM, Lis JT (2020) Pioneer factor GAF cooperates with PBAP and NURF to regulate transcription. bioRxiv:2020.2005.2010.087262. doi:https://doi.org/10.1101/2020.05.10.087262

  84. Gilchrist DA, Dos Santos G, Fargo DC, Xie B, Gao Y, Li L, Adelman K (2010) Pausing of RNA polymerase II disrupts DNA-specified nucleosome organization to enable precise gene regulation. Cell 143(4):540–551. https://doi.org/10.1016/j.cell.2010.10.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Schulz KN, Harrison MM (2019) Mechanisms regulating zygotic genome activation. Nat Rev Genet 20(4):221–234. https://doi.org/10.1038/s41576-018-0087-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Vastenhouw NL, Cao WX, Lipshitz HD (2019) The maternal-to-zygotic transition revisited. Development 146(11):1. https://doi.org/10.1242/dev.161471

    Article  CAS  Google Scholar 

  87. Hirschhorn JN, Brown SA, Clark CD, Winston F (1992) Evidence that SNF2/SWI2 and SNF5 activate transcription in yeast by altering chromatin structure. Genes Dev 6(12A):2288–2298. https://doi.org/10.1101/gad.6.12a.2288

    Article  CAS  PubMed  Google Scholar 

  88. Schwabish MA, Struhl K (2007) The Swi/Snf complex is important for histone eviction during transcriptional activation and RNA polymerase II elongation in vivo. Mol Cell Biol 27(20):6987–6995. https://doi.org/10.1128/MCB.00717-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Zandi E, Tran TN, Chamberlain W, Parker CS (1997) Nuclear entry, oligomerization, and DNA binding of the Drosophila heat shock transcription factor are regulated by a unique nuclear localization sequence. Genes Dev 11(10):1299–1314. https://doi.org/10.1101/gad.11.10.1299

    Article  CAS  PubMed  Google Scholar 

  90. Kyrchanova O, Maksimenko O, Ibragimov A, Sokolov V, Postika N, Lukyanova M, Schedl P, Georgiev P (2020) The insulator functions of the Drosophila polydactyl C2H2 zinc finger protein CTCF: necessity versus sufficiency. Science Adv 6(13):eaaz3152. https://doi.org/10.1126/sciadv.aaz3152

    Article  CAS  Google Scholar 

  91. Harrison MM, Li XY, Kaplan T, Botchan MR, Eisen MB (2011) Zelda binding in the early Drosophila melanogaster embryo marks regions subsequently activated at the maternal-to-zygotic transition. PLoS Genet 7(10):e1002266. https://doi.org/10.1371/journal.pgen.1002266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Chopra VS, Srinivasan A, Kumar RP, Mishra K, Basquin D, Docquier M, Seum C, Pauli D, Mishra RK (2008) Transcriptional activation by GAGA factor is through its direct interaction with dmTAF3. Dev Biol 317(2):660–670. https://doi.org/10.1016/j.ydbio.2008.02.008

    Article  CAS  PubMed  Google Scholar 

  93. Giot L, Bader JS, Brouwer C, Chaudhuri A, Kuang B, Li Y, Hao YL, Ooi CE, Godwin B, Vitols E, Vijayadamodar G, Pochart P, Machineni H, Welsh M, Kong Y, Zerhusen B, Malcolm R, Varrone Z, Collis A, Minto M, Burgess S, McDaniel L, Stimpson E, Spriggs F, Williams J, Neurath K, Ioime N, Agee M, Voss E, Furtak K, Renzulli R, Aanensen N, Carrolla S, Bickelhaupt E, Lazovatsky Y, DaSilva A, Zhong J, Stanyon CA, Finley RL Jr, White KP, Braverman M, Jarvie T, Gold S, Leach M, Knight J, Shimkets RA, McKenna MP, Chant J, Rothberg JM (2003) A protein interaction map of Drosophila melanogaster. Science 302(5651):1727–1736. https://doi.org/10.1126/science.1090289

    Article  CAS  PubMed  Google Scholar 

  94. Mason PB Jr, Lis JT (1997) Cooperative and competitive protein interactions at the hsp70 promoter. J Biol Chem 272(52):33227–33233. https://doi.org/10.1074/jbc.272.52.33227

    Article  CAS  PubMed  Google Scholar 

  95. Oh H, Slattery M, Ma L, Crofts A, White KP, Mann RS, Irvine KD (2013) Genome-wide association of Yorkie with chromatin and chromatin-remodeling complexes. Cell Rep 3(2):309–318. https://doi.org/10.1016/j.celrep.2013.01.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bayarmagnai B, Nicolay BN, Islam AB, Lopez-Bigas N, Frolov MV (2012) Drosophila GAGA factor is required for full activation of the dE2f1-Yki/Sd transcriptional program. Cell Cycle 11(22):4191–4202. https://doi.org/10.4161/cc.22486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Kaul A, Schuster E, Jennings BH (2014) The Groucho co-repressor is primarily recruited to local target sites in active chromatin to attenuate transcription. PLoS Genet 10(8):e1004595. https://doi.org/10.1371/journal.pgen.1004595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Yeung K, Boija A, Karlsson E, Holmqvist PH, Tsatskis Y, Nisoli I, Yap D, Lorzadeh A, Moksa M, Hirst M, Aparicio S, Fanto M, Stenberg P, Mannervik M, McNeill H (2017) Atrophin controls developmental signaling pathways via interactions with Trithorax-like. eLife. https://doi.org/10.7554/eLife.23084

    Article  PubMed  PubMed Central  Google Scholar 

  99. Galloni M, Gyurkovics H, Schedl P, Karch F (1993) The bluetail transposon: evidence for independent cis-regulatory domains and domain boundaries in the bithorax complex. EMBO J 12(3):1087–1097

    Article  CAS  Google Scholar 

  100. Gyurkovics H, Gausz J, Kummer J, Karch F (1990) A new homeotic mutation in the Drosophila bithorax complex removes a boundary separating two domains of regulation. EMBO J 9(8):2579–2585

    Article  CAS  Google Scholar 

  101. Hagstrom K, Muller M, Schedl P (1996) Fab-7 functions as a chromatin domain boundary to ensure proper segment specification by the Drosophila bithorax complex. Genes Dev 10(24):3202–3215. https://doi.org/10.1101/gad.10.24.3202

    Article  CAS  PubMed  Google Scholar 

  102. Karch F, Galloni M, Sipos L, Gausz J, Gyurkovics H, Schedl P (1994) Mcp and Fab-7: molecular analysis of putative boundaries of cis-regulatory domains in the bithorax complex of Drosophila melanogaster. Nucleic Acids Res 22(15):3138–3146. https://doi.org/10.1093/nar/22.15.3138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Mihaly J, Hogga I, Gausz J, Gyurkovics H, Karch F (1997) In situ dissection of the Fab-7 region of the bithorax complex into a chromatin domain boundary and a Polycomb-response element. Development 124(9):1809–1820

    Article  CAS  Google Scholar 

  104. Zhou J, Barolo S, Szymanski P, Levine M (1996) The Fab-7 element of the bithorax complex attenuates enhancer-promoter interactions in the Drosophila embryo. Genes Dev 10(24):3195–3201

    Article  CAS  Google Scholar 

  105. Barges S, Mihaly J, Galloni M, Hagstrom K, Muller M, Shanower G, Schedl P, Gyurkovics H, Karch F (2000) The Fab-8 boundary defines the distal limit of the bithorax complex iab-7 domain and insulates iab-7 from initiation elements and a PRE in the adjacent iab-8 domain. Development 127(4):779–790

    Article  CAS  Google Scholar 

  106. Zhou J, Ashe H, Burks C, Levine M (1999) Characterization of the transvection mediating region of the abdominal-B locus in Drosophila. Development 126(14):3057–3065

    Article  CAS  Google Scholar 

  107. Chetverina D, Aoki T, Erokhin M, Georgiev P, Schedl P (2014) Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks. BioEssays News Rev Mole Cell Dev Biol 36(2):163–172. https://doi.org/10.1002/bies.201300125

    Article  CAS  Google Scholar 

  108. Kyrchanova O, Mogila V, Wolle D, Magbanua JP, White R, Georgiev P, Schedl P (2015) The boundary paradox in the Bithorax complex. Mech Dev 138(Pt 2):122–132. https://doi.org/10.1016/j.mod.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Maeda RK, Karch F (2015) The open for business model of the bithorax complex in Drosophila. Chromosoma 124(3):293–307. https://doi.org/10.1007/s00412-015-0522-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mihaly J, Barges S, Sipos L, Maeda R, Cleard F, Hogga I, Bender W, Gyurkovics H, Karch F (2006) Dissecting the regulatory landscape of the Abd-B gene of the bithorax complex. Development 133(15):2983–2993. https://doi.org/10.1242/dev.02451

    Article  CAS  PubMed  Google Scholar 

  111. Schweinsberg SE, Schedl P (2004) Developmental modulation of Fab-7 boundary function. Development 131(19):4743–4749. https://doi.org/10.1242/dev.01343

    Article  CAS  PubMed  Google Scholar 

  112. Kyrchanova O, Wolle D, Sabirov M, Kurbidaeva A, Aoki T, Maksimenko O, Kyrchanova M, Georgiev P, Schedl P (2019) Distinct elements confer the blocking and bypass functions of the Bithorax fab-8 boundary. Genetics 213(3):865–876. https://doi.org/10.1534/genetics.119.302694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Kaye EG, Kurbidaeva A, Wolle D, Aoki T, Schedl P, Larschan E (2017) Drosophila dosage compensation loci associate with a boundary-forming insulator complex. Mol Cell Biol. https://doi.org/10.1128/MCB.00253-17

    Article  PubMed  PubMed Central  Google Scholar 

  114. Pai CY, Lei EP, Ghosh D, Corces VG (2004) The centrosomal protein CP190 is a component of the gypsy chromatin insulator. Mol Cell 16(5):737–748. https://doi.org/10.1016/j.molcel.2004.11.004

    Article  CAS  PubMed  Google Scholar 

  115. Gause M, Morcillo P, Dorsett D (2001) Insulation of enhancer-promoter communication by a gypsy transposon insert in the Drosophila cut gene: cooperation between suppressor of hairy-wing and modifier of mdg4 proteins. Mol Cell Biol 21(14):4807–4817. https://doi.org/10.1128/MCB.21.14.4807-4817.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Ghosh D, Gerasimova TI, Corces VG (2001) Interactions between the Su(Hw) and Mod(mdg4) proteins required for gypsy insulator function. EMBO J 20(10):2518–2527. https://doi.org/10.1093/emboj/20.10.2518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Brown JL, Mucci D, Whiteley M, Dirksen ML, Kassis JA (1998) The Drosophila Polycomb group gene pleiohomeotic encodes a DNA binding protein with homology to the transcription factor YY1. Mol Cell 1(7):1057–1064. https://doi.org/10.1016/s1097-2765(00)80106-9

    Article  CAS  PubMed  Google Scholar 

  118. Dejardin J, Cavalli G (2004) Chromatin inheritance upon Zeste-mediated Brahma recruitment at a minimal cellular memory module. EMBO J 23(4):857–868. https://doi.org/10.1038/sj.emboj.7600108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Shokri L, Inukai S, Hafner A, Weinand K, Hens K, Vedenko A, Gisselbrecht SS, Dainese R, Bischof J, Furger E, Feuz JD, Basler K, Deplancke B, Bulyk ML (2019) A Comprehensive Drosophila melanogaster transcription factor interactome. Cell Rep 27(3):955–970957. https://doi.org/10.1016/j.celrep.2019.03.071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Mahmoudi T, Zuijderduijn LM, Mohd-Sarip A, Verrijzer CP (2003) GAGA facilitates binding of Pleiohomeotic to a chromatinized Polycomb response element. Nucleic Acids Res 31(14):4147–4156. https://doi.org/10.1093/nar/gkg479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Schwendemann A, Lehmann M (2002) Pipsqueak and GAGA factor act in concert as partners at homeotic and many other loci. Proc Natl Acad Sci USA 99(20):12883–12888. https://doi.org/10.1073/pnas.202341499

    Article  CAS  PubMed  Google Scholar 

  122. Faucheux M, Roignant JY, Netter S, Charollais J, Antoniewski C, Theodore L (2003) batman Interacts with polycomb and trithorax group genes and encodes a BTB/POZ protein that is included in a complex containing GAGA factor. Mol Cell Biol 23(4):1181–1195

    Article  CAS  Google Scholar 

  123. Mishra K, Chopra VS, Srinivasan A, Mishra RK (2003) Trl-GAGA directly interacts with lola like and both are part of the repressive complex of Polycomb group of genes. Mech Dev 120(6):681–689

    Article  CAS  Google Scholar 

  124. Espinas ML, Canudas S, Fanti L, Pimpinelli S, Casanova J, Azorin F (2000) The GAGA factor of Drosophila interacts with SAP18, a Sin3-associated polypeptide. EMBO Rep 1(3):253–259. https://doi.org/10.1093/embo-reports/kvd046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Salvaing J, Lopez A, Boivin A, Deutsch JS, Peronnet F (2003) The Drosophila Corto protein interacts with Polycomb-group proteins and the GAGA factor. Nucleic Acids Res 31(11):2873–2882

    Article  CAS  Google Scholar 

  126. Guruharsha KG, Rual JF, Zhai B, Mintseris J, Vaidya P, Vaidya N, Beekman C, Wong C, Rhee DY, Cenaj O, McKillip E, Shah S, Stapleton M, Wan KH, Yu C, Parsa B, Carlson JW, Chen X, Kapadia B, VijayRaghavan K, Gygi SP, Celniker SE, Obar RA, Artavanis-Tsakonas S (2011) A protein complex network of Drosophila melanogaster. Cell 147(3):690–703. https://doi.org/10.1016/j.cell.2011.08.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lehmann M, Siegmund T, Lintermann KG, Korge G (1998) The pipsqueak protein of Drosophila melanogaster binds to GAGA sequences through a novel DNA-binding domain. J Biol Chem 273(43):28504–28509

    Article  CAS  Google Scholar 

  128. Kasinathan S, Orsi GA, Zentner GE, Ahmad K, Henikoff S (2014) High-resolution mapping of transcription factor binding sites on native chromatin. Nat Methods 11(2):203–209. https://doi.org/10.1038/nmeth.2766

    Article  CAS  PubMed  Google Scholar 

  129. Huang DH, Chang YL, Yang CC, Pan IC, King B (2002) pipsqueak encodes a factor essential for sequence-specific targeting of a polycomb group protein complex. Mol Cell Biol 22(17):6261–6271

    Article  CAS  Google Scholar 

  130. Wang L, Ding L, Jones CA, Jones RS (2002) Drosophila enhancer of zeste protein interacts with dSAP18. Gene 285(1–2):119–125. https://doi.org/10.1016/s0378-1119(02)00418-3

    Article  CAS  PubMed  Google Scholar 

  131. King HW, Klose RJ (2017) The pioneer factor OCT4 requires the chromatin remodeller BRG1 to support gene regulatory element function in mouse embryonic stem cells. eLife. https://doi.org/10.7554/eLife.22631

    Article  PubMed  PubMed Central  Google Scholar 

  132. Hainer SJ, Boskovic A, McCannell KN, Rando OJ, Fazzio TG (2019) Profiling of pluripotency factors in single cells and early embryos. Cell 177(5):1319-1329 e1311. https://doi.org/10.1016/j.cell.2019.03.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Kumar S (2011) Remote homologue identification of Drosophila GAGA factor in mouse. Bioinformation 7(1):29–32. https://doi.org/10.6026/97320630007029

    Article  PubMed  PubMed Central  Google Scholar 

  134. Matharu NK, Hussain T, Sankaranarayanan R, Mishra RK (2010) Vertebrate homologue of Drosophila GAGA factor. J Mol Biol 400(3):434–447. https://doi.org/10.1016/j.jmb.2010.05.010

    Article  CAS  PubMed  Google Scholar 

  135. Srivastava A, Kumar AS, Mishra RK (2018) Vertebrate GAF/ThPOK: emerging functions in chromatin architecture and transcriptional regulation. Cell Mol Life Sci CMLS 75(4):623–633. https://doi.org/10.1007/s00018-017-2633-7

    Article  CAS  PubMed  Google Scholar 

  136. Ciucci T, Vacchio MS, Gao Y, Tomassoni Ardori F, Candia J, Mehta M, Zhao Y, Tran B, Pepper M, Tessarollo L, McGavern DB, Bosselut R (2019) The emergence and functional fitness of memory CD4(+) T cells require the transcription factor thpok. Immunity 50(1):91-105 e104. https://doi.org/10.1016/j.immuni.2018.12.019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Luckey MA, Kimura MY, Waickman AT, Feigenbaum L, Singer A, Park JH (2014) The transcription factor ThPOK suppresses Runx3 and imposes CD4(+) lineage fate by inducing the SOCS suppressors of cytokine signaling. Nat Immunol 15(7):638–645. https://doi.org/10.1038/ni.2917

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vasanthi D, Anant M, Srivastava S, Mishra RK (2010) A functionally conserved boundary element from the mouse HoxD locus requires GAGA factor in Drosophila. Development 137(24):4239–4247. https://doi.org/10.1242/dev.058701

    Article  CAS  PubMed  Google Scholar 

  139. Srivastava A, Mishra RK (2020) Interactome of vertebrate GAF/ThPOK reveals its diverse functions in gene regulation and DNA repair. J Biosci 45:1

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to the Center for Precision Genome Editing and Genetic Technologies for Biomedicine IGB RAS for computer equipment. This study was supported by the Russian Science Foundation (RSF) 18-74-10091 to D.C, by the National Institutes of Health (NIH) 5R35GM126975 to P.S.

Funding

This study was supported by the Russian Science Foundation (RSF) 18-74-10091 to D.C, by the National Institutes of Health (NIH) 5R35GM126975 to P.S.

Author information

Authors and Affiliations

Authors

Contributions

All authors designed, wrote, and revised the review.

Corresponding authors

Correspondence to Darya Chetverina or Paul Schedl.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 36 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chetverina, D., Erokhin, M. & Schedl, P. GAGA factor: a multifunctional pioneering chromatin protein. Cell. Mol. Life Sci. 78, 4125–4141 (2021). https://doi.org/10.1007/s00018-021-03776-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-021-03776-z

Keywords

Navigation