Skip to main content

Advertisement

Log in

What can urinary exosomes tell us?

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Exosomes are involved in a wide variety of biochemical processes in human body homeostasis. Exosomes also provide important information regarding communications among several organ systems. Additionally, they can serve as molecular vehicles to deliver drugs. Therefore, exosomes have received wide attention in current biomedical research for unraveling pathogenic mechanisms of diseases, searching for novel biomarkers, and discovering new drugs. This paper reviews and discusses the significance of urinary exosomes for a better understanding of human disease pathophysiology and their potential use as therapeutic targets. Isolation methods of exosomes and the latest technological advances are also discussed. Furthermore, novel urinary exosomal biomarkers are highlighted with special emphasis on their clinical applicability (particularly sensitivity, specificity, reliability, and other aspects). Finally, future trends for this field are analyzed and our perspectives are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colombo M, Raposo G, Thery C (2014) Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Ann Rev Cell Dev Biol 30:255–289. https://doi.org/10.1146/annurev-cellbio-101512-122326

    Article  CAS  Google Scholar 

  2. Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200(4):373–383. https://doi.org/10.1083/jcb.201211138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Vlassov AV, Magdaleno S, Setterquist R, Conrad R (2012) Exosomes: current knowledge of their composition, biological functions, and diagnostic and therapeutic potentials. Biochem Biophys Acta 1820(7):940–948. https://doi.org/10.1016/j.bbagen.2012.03.017

    Article  CAS  PubMed  Google Scholar 

  4. Barros ER, Carvajal CA (2017) Urinary exosomes and their cargo: potential biomarkers for mineralocorticoid arterial hypertension? Front Endocrinol (Lausanne) 8:230–230. https://doi.org/10.3389/fendo.2017.00230

    Article  Google Scholar 

  5. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L (2010) Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int 78(9):838–848. https://doi.org/10.1038/ki.2010.278

    Article  CAS  PubMed  Google Scholar 

  6. Dear JW, Street JM, Bailey MA (2013) Urinary exosomes: a reservoir for biomarker discovery and potential mediators of intrarenal signalling. Proteomics 13(10–11):1572–1580. https://doi.org/10.1002/pmic.201200285

    Article  CAS  PubMed  Google Scholar 

  7. Lässer C, Alikhani VS, Ekström K, Eldh M, Paredes PT, Bossios A, Sjöstrand M, Gabrielsson S, Lötvall J, Valadi H (2011) Human saliva, plasma and breast milk exosomes contain RNA: uptake by macrophages. J Transl Med 9:9–9. https://doi.org/10.1186/1479-5876-9-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Palanisamy V, Sharma S, Deshpande A, Zhou H, Gimzewski J, Wong DT (2010) Nanostructural and transcriptomic analyses of human saliva derived exosomes. PLoS ONE 5(1):e8577. https://doi.org/10.1371/journal.pone.0008577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Thakur BK, Zhang H, Becker A, Matei I, Huang Y, Costa-Silva B, Zheng Y, Hoshino A, Brazier H, Xiang J, Williams C, Rodriguez-Barrueco R, Silva JM, Zhang W, Hearn S, Elemento O, Paknejad N, Manova-Todorova K, Welte K, Bromberg J, Peinado H, Lyden D (2014) Double-stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res 24(6):766–769. https://doi.org/10.1038/cr.2014.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tu M, Wei F, Yang J, Wong D (2015) Detection of exosomal biomarker by electric field-induced release and measurement (EFIRM). J Vis Exp JoVE 95:52439. https://doi.org/10.3791/52439

    Article  CAS  Google Scholar 

  11. Pegtel DM, Gould SJ (2019) Exosomes. Ann Rev Biochem 88:487–514

    CAS  PubMed  Google Scholar 

  12. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    CAS  PubMed  Google Scholar 

  13. Zomer A, Maynard C, Verweij FJ, Kamermans A, Schäfer R, Beerling E, Schiffelers RM, de Wit E, Berenguer J, Ellenbroek SIJ (2015) In vivo imaging reveals extracellular vesicle-mediated phenocopying of metastatic behavior. Cell 161(5):1046–1057

    CAS  PubMed  PubMed Central  Google Scholar 

  14. McKiernan J, Donovan MJ, O’Neill V, Bentink S, Noerholm M, Belzer S, Skog J, Kattan MW, Partin A, Andriole G (2016) A novel urine exosome gene expression assay to predict high-grade prostate cancer at initial biopsy. JAMA Oncol 2(7):882–889

    PubMed  Google Scholar 

  15. Hoshino A, Costa-Silva B, Shen T-L, Rodrigues G, Hashimoto A, Mark MT, Molina H, Kohsaka S, Di Giannatale A, Ceder S (2015) Tumour exosome integrins determine organotropic metastasis. Nature 527(7578):329–335

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Lambert AW, Pattabiraman DR, Weinberg RA (2017) Emerging biological principles of metastasis. Cell 168(4):670–691

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Howitt J, Hill AF (2016) Exosomes in the pathology of neurodegenerative diseases. J Biol Chem 291(52):26589–26597

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Mulcahy LA, Pink RC, Carter DR (2014) Routes and mechanisms of extracellular vesicle uptake. J Extracell Vesicles. https://doi.org/10.3402/jev.v3.24641

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim MS, Haney MJ, Zhao Y, Mahajan V, Deygen I, Klyachko NL, Inskoe E, Piroyan A, Sokolsky M, Okolie O, Hingtgen SD, Kabanov AV, Batrakova EV (2016) Development of exosome-encapsulated paclitaxel to overcome MDR in cancer cells. Nanomed Nanotechnol Biol Med 12(3):655–664. https://doi.org/10.1016/j.nano.2015.10.012

    Article  CAS  Google Scholar 

  20. Tsoi KM, MacParland SA, Ma X-Z, Spetzler VN, Echeverri J, Ouyang B, Fadel SM, Sykes EA, Goldaracena N, Kaths JM, Conneely JB, Alman BA, Selzner M, Ostrowski MA, Adeyi OA, Zilman A, McGilvray ID, Chan WCW (2016) Mechanism of hard-nanomaterial clearance by the liver. Nat Mater 15(11):1212–1221. https://doi.org/10.1038/nmat4718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li X, Corbett AL, Taatizadeh E, Tasnim N, Little JP, Garnis C, Daugaard M, Guns E, Hoorfar M, Li ITS (2019) Challenges and opportunities in exosome research—perspectives from biology, engineering, and cancer therapy. APL Bioeng 3(1):011503. https://doi.org/10.1063/1.5087122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang T, Martin P, Fogarty B, Brown A, Schurman K, Phipps R, Yin VP, Lockman P, Bai S (2015) Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm Res 32(6):2003–2014. https://doi.org/10.1007/s11095-014-1593-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Cheng J, Nonaka T, Wong DTW (2019) salivary exosomes as nanocarriers for cancer biomarker delivery. Materials (Basel, Switzerland). https://doi.org/10.3390/ma12040654

    Article  PubMed Central  Google Scholar 

  24. Herreros-Villanueva M, Bujanda L (2016) Non-invasive biomarkers in pancreatic cancer diagnosis: what we need versus what we have. Ann Transl Med 4(7):134. https://doi.org/10.21037/atm.2016.03.44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huebner AR, Somparn P, Benjachat T, Leelahavanichkul A, Avihingsanon Y, Fenton RA, Pisitkun T (2015) Exosomes in urine biomarker discovery. Adv Exp Med Biol 845:43–58. https://doi.org/10.1007/978-94-017-9523-4_5

    Article  PubMed  Google Scholar 

  26. Beasley-Green A (2016) Urine proteomics in the era of mass spectrometry. Int Neurourol J 20(Suppl 2):S70–S75. https://doi.org/10.5213/inj.1612720.360

    Article  PubMed  PubMed Central  Google Scholar 

  27. Lange T, Artelt N, Kindt F, Stracke S, Rettig R, Lendeckel U, Chadjichristos CE, Kavvadas P, Chatziantoniou C, Endlich K (2019) MiR-21 is up-regulated in urinary exosomes of chronic kidney disease patients and after glomerular injury. J Cell Mol Med 23(7):4839

    PubMed  PubMed Central  Google Scholar 

  28. Sonoda H, Lee BR, Park K-H, Nihalani D, Yoon J-H, Ikeda M, Kwon S-H (2019) miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep 9(1):1–11

    CAS  Google Scholar 

  29. Gheinani AH, Vögeli M, Baumgartner U, Vassella E, Draeger A, Burkhard FC, Monastyrskaya K (2018) Improved isolation strategies to increase the yield and purity of human urinary exosomes for biomarker discovery. Sci Rep 8(1):1–17

    CAS  Google Scholar 

  30. Ayala-Mar S, Donoso-Quezada J, Gallo-Villanueva RC, Perez-Gonzalez VH, González-Valdez J (2019) Recent advances and challenges in the recovery and purification of cellular exosomes. Electrophoresis 40(23–24):3036–3049

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Doyle LM, Wang MZ (2019) Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells 8(7):727

    CAS  PubMed Central  Google Scholar 

  32. Thongboonkerd V (2019) Roles for exosome in various kidney diseases and disorders. Front Pharmacol. https://doi.org/10.3389/fphar.2019.01655

    Article  PubMed  Google Scholar 

  33. Lin J, Li J, Huang B, Liu J, Chen X, Chen X-M, Xu Y-M, Huang L-F, Wang X-Z (2015) Exosomes: novel biomarkers for clinical diagnosis. Sci World J 2015:8. https://doi.org/10.1155/2015/657086

    Article  Google Scholar 

  34. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX, Zimak J, Ségaliny A (2016) Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng 9(4):509–529

    CAS  PubMed  Google Scholar 

  35. Chen Y, Xie Y, Xu L, Zhan S, Xiao Y, Gao Y, Wu B, Ge W (2017) Protein content and functional characteristics of serum-purified exosomes from patients with colorectal cancer revealed by quantitative proteomics. Int J Cancer 140(4):900–913

    CAS  PubMed  Google Scholar 

  36. Soung YH, Ford S, Zhang V, Chung J (2017) Exosomes in cancer diagnostics. Cancers 9(1):8

    PubMed Central  Google Scholar 

  37. Solé C, Moliné T, Vidal M, Ordi-Ros J, Cortés-Hernández J (2019) An exosomal urinary miRNA signature for early diagnosis of renal fibrosis in lupus nephritis. Cells 8(8):773

    PubMed Central  Google Scholar 

  38. Zaporozhchenko IA, Bryzgunova OE, Lekchnov EA, Osipov ID, Zaripov MM, Yurchenko YB, Yarmoschuk SV, Pashkovskaya OA, Rykova EY, Zheravin AA, Laktionov PP (2018) Representation analysis of miRNA in urine microvesicles and cell-free urine in prostate diseases. Biochem Suppl Ser B Biomed Chem 12(2):156–163. https://doi.org/10.1134/s1990750818020142

    Article  Google Scholar 

  39. Turturici G, Tinnirello R, Sconzo G, Geraci F (2014) Extracellular membrane vesicles as a mechanism of cell-to-cell communication: advantages and disadvantages. Am J Physiol Cell Physiol 306(7):C621–C633

    CAS  PubMed  Google Scholar 

  40. Villa F, Quarto R, Tasso R (2019) Extracellular vesicles as natural, safe and efficient drug delivery systems. Pharmaceutics 11(11):557

    CAS  PubMed Central  Google Scholar 

  41. Zhuang X, Xiang X, Grizzle W, Sun D, Zhang S, Axtell RC, Ju S, Mu J, Zhang L, Steinman L (2011) Treatment of brain inflammatory diseases by delivering exosome encapsulated anti-inflammatory drugs from the nasal region to the brain. Mol Ther 19(10):1769–1779

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Antes TJ, Middleton RC, Luther KM, Ijichi T, Peck KA, Liu WJ, Valle J, Echavez AK, Marbán E (2018) Targeting extracellular vesicles to injured tissue using membrane cloaking and surface display. J Nanobiotechnol 16(1):1–15

    Google Scholar 

  43. Ryu A-R, Kim DH, Kim E, Lee MY (2018) The potential roles of extracellular vesicles in cigarette smoke-associated diseases. Oxidative Med Cell Longev. https://doi.org/10.1155/2018/4692081

    Article  Google Scholar 

  44. Maas SLN, Breakefield XO, Weaver AM (2017) Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27(3):172–188. https://doi.org/10.1016/j.tcb.2016.11.003

    Article  CAS  PubMed  Google Scholar 

  45. Tkach M, Thery C (2016) Communication by extracellular vesicles: where we are and where we need to go. Cell 164(6):1226–1232. https://doi.org/10.1016/j.cell.2016.01.043

    Article  CAS  PubMed  Google Scholar 

  46. van Niel G, D’Angelo G, Raposo G (2018) Shedding light on the cell biology of extracellular vesicles. Nat Rev Mol Cell Biol 19(4):213–228. https://doi.org/10.1038/nrm.2017.125

    Article  CAS  PubMed  Google Scholar 

  47. Yuana Y, Levels J, Grootemaat A, Sturk A, Nieuwland R (2014) Co-isolation of extracellular vesicles and high-density lipoproteins using density gradient ultracentrifugation. J Extracell Vesicles. https://doi.org/10.3402/jev.v3403.23262

    Article  PubMed  PubMed Central  Google Scholar 

  48. Sonoda H, Lee BR, Park K-H, Nihalani D, Yoon J-H, Ikeda M, Kwon S-H (2019) miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep 9(1):4692. https://doi.org/10.1038/s41598-019-40747-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Cheng H, Fang H, Xu RD, Fu MQ, Chen L, Song XY, Qian JY, Zou YZ, Ma JY, Ge JB (2019) Development of a rinsing separation method for exosome isolation and comparison to conventional methods. Eur Rev Med Pharmacol Sci 23(12):5074–5083. https://doi.org/10.26355/eurrev_201906_18171

    Article  CAS  PubMed  Google Scholar 

  50. Lan T, Xi X, Chu Q, Zhao L, Chen A, Lu JJ, Wang F, Zhang W (2018) A preliminary origin-tracking study of different densities urinary exosomes. Electrophoresis 39(18):2316–2320. https://doi.org/10.1002/elps.201700388

    Article  CAS  PubMed  Google Scholar 

  51. Gupta S, Rawat S, Arora V, Kottarath SK, Dinda AK, Vaishnav PK, Nayak B, Mohanty S (2018) An improvised one-step sucrose cushion ultracentrifugation method for exosome isolation from culture supernatants of mesenchymal stem cells. Stem Cell Res Therapy 9(1):1–11

    CAS  Google Scholar 

  52. Wu Y, Deng W, Klinke DJ 2nd (2015) Exosomes: improved methods to characterize their morphology, RNA content, and surface protein biomarkers. Analyst 140(19):6631–6642. https://doi.org/10.1039/c5an00688k

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sharma S, Rasool HI, Palanisamy V, Mathisen C, Schmidt M, Wong DT, Gimzewski JK (2010) Structural-mechanical characterization of nanoparticle exosomes in human saliva, using correlative AFM, FESEM, and force spectroscopy. ACS Nano 4(4):1921–1926. https://doi.org/10.1021/nn901824n

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Awdishu L, Tsunoda S, Pearlman M, Kokoy-Mondragon C, Ghassemian M, Naviaux RK, Patton HM, Mehta RL, Vijay B, RamachandraRao SP (2019) Identification of maltase glucoamylase as a biomarker of acute kidney injury in patients with cirrhosis. Critic Care Res Pract. https://doi.org/10.1155/2019/5912804

    Article  Google Scholar 

  55. Awdishu L, Tsunoda S, Pearlman M, Kokoy-Mondragon C, Ghassemian M, Naviaux RK, Patton HM, Mehta RL, Vijay B, RamachandraRao SP (2019) Identification of maltase glucoamylase as a biomarker of acute kidney injury in patients with cirrhosis. Crit Care Res Pract 2019:5912804. https://doi.org/10.1155/2019/5912804

    Article  PubMed  PubMed Central  Google Scholar 

  56. Carvajal C, Herrada A, Castillo C, Contreras F, Stehr C, Mosso L, Kalergis A, Fardella C (2009) Primary aldosteronism can alter peripheral levels of transforming growth factor β and tumor necrosis factor α. J Endocrinol Invest 32(9):759–765

    CAS  PubMed  Google Scholar 

  57. Stehr CB, Mellado R, Ocaranza MP, Carvajal CA, Mosso L, Becerra E, Solis M, García L, Lavandero S, Jalil J (2010) Increased levels of oxidative stress, subclinical inflammation, and myocardial fibrosis markers in primary aldosteronism patients. J Hypertens 28(10):2120–2126

    CAS  PubMed  Google Scholar 

  58. Zhu X, Manning RD Jr, Lu D, Gomez-Sanchez CE, Fu Y, Juncos LA, Liu R (2011) Aldosterone stimulates superoxide production in macula densa cells. Am J Physiol Renal Physiol 301(3):F529–F535

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Carvajal CA, Herrada AA, Castillo CR, Contreras FJ, Stehr CB, Mosso LM, Kalergis AM, Fardella CE (2009) Primary aldosteronism can alter peripheral levels of transforming growth factor beta and tumor necrosis factor alpha. J Endocrinol Invest 32(9):759–765. https://doi.org/10.3275/6429

    Article  CAS  PubMed  Google Scholar 

10.1007/bf03346533.

  1. Stehr CB, Mellado R, Ocaranza MP, Carvajal CA, Mosso L, Becerra E, Solis M, Garcia L, Lavandero S, Jalil J, Fardella CE (2010) Increased levels of oxidative stress, subclinical inflammation, and myocardial fibrosis markers in primary aldosteronism patients. J Hypertens 28(10):2120–2126. https://doi.org/10.1097/HJH.0b013e32833d0177

    Article  CAS  PubMed  Google Scholar 

  2. Zhu X, Manning RD Jr, Lu D, Gomez-Sanchez CE, Fu Y, Juncos LA, Liu R (2011) Aldosterone stimulates superoxide production in macula densa cells. Am J Physiol Ren Physiol 301(3):F529-535. https://doi.org/10.1152/ajprenal.00596.2010

    Article  CAS  Google Scholar 

  3. Feldman RD, Limbird LE (2017) GPER (GPR30): a nongenomic receptor (gpcr) for steroid hormones with implications for cardiovascular disease and cancer. Annu Rev Pharmacol Toxicol 57:567–584. https://doi.org/10.1146/annurev-pharmtox-010716-104651

    Article  CAS  PubMed  Google Scholar 

  4. Kuppusamy M, Gomez-Sanchez EP, Beloate LN, Plonczynski M, Naray-Fejes-Toth A, Fejes-Toth G, Gomez-Sanchez CE (2017) Interaction of the mineralocorticoid receptor with RACK1 and its role in aldosterone signaling. Endocrinology 158(7):2367–2375. https://doi.org/10.1210/en.2017-00095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shibata S, Mu S, Kawarazaki H, Muraoka K, Ishizawa K, Yoshida S, Kawarazaki W, Takeuchi M, Ayuzawa N, Miyoshi J, Takai Y, Ishikawa A, Shimosawa T, Ando K, Nagase M, Fujita T (2011) Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor-dependent pathway. J Clin Investig 121(8):3233–3243. https://doi.org/10.1172/jci43124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tapia-Castillo A, Carvajal CA, Campino C, Hill C, Allende F, Vecchiola A, Carrasco C, Bancalari R, Valdivia C, Lagos C, Martinez-Aguayo A, Garcia H, Aglony M, Baudrand RF, Kalergis AM, Michea LF, Riedel CA, Fardella CE (2015) The expression of RAC1 and mineralocorticoid pathway-dependent genes are associated with different responses to salt intake. Am J Hypertens 28(6):722–728. https://doi.org/10.1093/ajh/hpu224

    Article  CAS  PubMed  Google Scholar 

  7. Ichai C, Bichet DG (2018) Water and sodium balance. Metabolic disorders and critically ill patients. Springer, Cham, pp 3–31

    Google Scholar 

  8. Rodríguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, Sandvig K, Linē A, Llorente A (2017) Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer 16(1):156

    PubMed  PubMed Central  Google Scholar 

  9. Vives EG, Marcé CS, Vidal M, Cortés-Hernández J, Ordi-Ros J (2018) Urinary exosomes microRNAs: a future biomarkers in lupus patients with renal involvement. J Extracell Vesicles 7:174–174

    Google Scholar 

  10. Pathare G, Dhayat N, Mohebbi N, Wagner CA, Cheval L, Neuhaus TJ, Fuster DG (2018) Acute regulated expression of pendrin in human urinary exosomes. Pflügers Arch Eur J Physiol 470(2):427–438

    CAS  Google Scholar 

  11. Khurana R, Ranches G, Schafferer S, Lukasser M, Rudnicki M, Mayer G, Hüttenhofer A (2017) Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA (New York, NY) 23(2):142–152. https://doi.org/10.1261/rna.058834.116

    Article  CAS  Google Scholar 

  12. Lange T, Stracke S, Rettig R, Lendeckel U, Kuhn J, Schlüter R, Rippe V, Endlich K, Endlich N (2017) Identification of miR-16 as an endogenous reference gene for the normalization of urinary exosomal miRNA expression data from CKD patients. PLoS ONE. https://doi.org/10.1371/journal.pone.0183435

    Article  PubMed  PubMed Central  Google Scholar 

  13. Khurana R, Ranches G, Schafferer S, Lukasser M, Rudnicki M, Mayer G, Hüttenhofer A (2017) Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA 23(2):142–152

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Dusso A, Colombo MI, Shanahan CM (2018) Not all vascular smooth muscle cell exosomes calcify equally in chronic kidney disease. Kidney Int 93(2):298–301

    PubMed  Google Scholar 

  15. Chen NX, O’Neill KD, Moe SM (2018) Matrix vesicles induce calcification of recipient vascular smooth muscle cells through multiple signaling pathways. Kidney Int 93(2):343–354

    CAS  PubMed  Google Scholar 

  16. Wang B, Zhang A, Wang H, Klein JD, Tan L, Wang Z-M, Du J, Naqvi N, Liu B-C, Wang XH (2019) miR-26a limits muscle wasting and cardiac fibrosis through exosome-mediated microRNA transfer in chronic kidney disease. Theranostics 9(7):1864

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Shibata S, Mu S, Kawarazaki H, Muraoka K, Ishizawa K-i, Yoshida S, Kawarazaki W, Takeuchi M, Ayuzawa N, Miyoshi J (2011) Rac1 GTPase in rodent kidneys is essential for salt-sensitive hypertension via a mineralocorticoid receptor–dependent pathway. J Clin Investig 121(8):3233–3243

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Zang J, Maxwell AP, Simpson DA, McKay GJ (2019) Differential expression of urinary exosomal microRNAs miR-21-5p and miR-30b-5p in Individuals with diabetic kidney disease. Sci Rep 9(1):10900. https://doi.org/10.1038/s41598-019-47504-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zang J, Maxwell AP, Simpson DA, McKay GJ (2019) Differential expression of urinary exosomal microRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease. Sci Rep 9(1):1–10

    Google Scholar 

  20. Sakurai A, Ono H, Ochi A, Matsuura M, Yoshimoto S, Kishi S, Murakami T, Tominaga T, Nagai K, Abe H, Doi T (2019) Involvement of Elf3 on Smad3 activation-dependent injuries in podocytes and excretion of urinary exosome in diabetic nephropathy. PLoS ONE 14(5):e0216788. https://doi.org/10.1371/journal.pone.0216788

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li W, Yang S, Qiao R, Zhang J (2018) Potential value of urinary exosome-derived let-7c-5p in the diagnosis and progression of type II diabetic nephropathy. Clin Lab 64(5):709–718

    CAS  PubMed  Google Scholar 

  22. Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG, Steadman R, Wymant J, Jones AT, Kynaston H, Mason MD, Tabi Z, Clayton A (2015) Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene 34(3):290–302. https://doi.org/10.1038/onc.2013.560

    Article  CAS  PubMed  Google Scholar 

  23. Webber J, Steadman R, Mason MD, Tabi Z, Clayton A (2010) Cancer exosomes trigger fibroblast to myofibroblast differentiation. Cancer Res 70(23):9621–9630. https://doi.org/10.1158/0008-5472.can-10-1722

    Article  CAS  PubMed  Google Scholar 

  24. Todorova D, Simoncini S, Lacroix R, Sabatier F, Dignat-George F (2017) Extracellular vesicles in angiogenesis. Circ Res 120(10):1658–1673. https://doi.org/10.1161/CIRCRESAHA.117.309681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zheng R, Du M, Wang X, Xu W, Liang J, Wang W, Lv Q, Qin C, Chu H, Wang M (2018) Exosome–transmitted long non-coding RNA PTENP1 suppresses bladder cancer progression. Mol Cancer 17(1):143

    PubMed  PubMed Central  Google Scholar 

  26. Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ (2016) Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS ONE. https://doi.org/10.1371/journal.pone.0147236

    Article  PubMed  PubMed Central  Google Scholar 

  27. Dhondt B, Van Deun J, Vermaerke S, de Marco A, Lumen N, De Wever O, Hendrix A (2018) Urinary extracellular vesicle biomarkers in urological cancers: from discovery towards clinical implementation. Int J Biochem Cell Biol 99:236–256. https://doi.org/10.1016/j.biocel.2018.04.009

    Article  CAS  PubMed  Google Scholar 

  28. Chen CL, Lai YF, Tang P, Chien KY, Yu JS, Tsai CH, Chen HW, Wu CC, Chung T, Hsu CW, Chen CD, Chang YS, Chang PL, Chen YT (2012) Comparative and targeted proteomic analyses of urinary microparticles from bladder cancer and hernia patients. J Proteome Res 11(12):5611–5629. https://doi.org/10.1021/pr3008732

    Article  CAS  PubMed  Google Scholar 

  29. Lin SY, Chang CH, Wu HC, Lin CC, Chang KP, Yang CR, Huang CP, Hsu WH, Chang CT, Chen CJ (2016) Proteome profiling of urinary exosomes identifies alpha 1-antitrypsin and H2B1K as diagnostic and prognostic biomarkers for urothelial carcinoma. Sci Rep. https://doi.org/10.1038/srep34446

    Article  PubMed  PubMed Central  Google Scholar 

  30. Silvers CR, Liu YR, Wu CH, Miyamoto H, Messing EM, Lee YF (2016) Identification of extracellular vesicle-borne periostin as a feature of muscle-invasive bladder cancer. Oncotarget 7(17):23335–23345. https://doi.org/10.18632/oncotarget.8024

    Article  PubMed  PubMed Central  Google Scholar 

  31. Silvers CR, Miyamoto H, Messing EM, Netto GJ, Lee YF (2017) Characterization of urinary extracellular vesicle proteins in muscle-invasive bladder cancer. Oncotarget 8(53):91199–91208. https://doi.org/10.18632/oncotarget.20043

    Article  PubMed  PubMed Central  Google Scholar 

  32. Perez A, Loizaga A, Arceo R, Lacasa I, Rabade A, Zorroza K, Mosen-Ansorena D, Gonzalez E, Aransay AM, Falcon-Perez JM, Unda-Urzaiz M, Royo F (2014) A pilot study on the potential of RNA-associated to urinary vesicles as a suitable non-invasive source for diagnostic purposes in bladder cancer. Cancers 6(1):179–192. https://doi.org/10.3390/cancers6010179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Berrondo C, Flax J, Kucherov V, Siebert A, Osinski T, Rosenberg A, Fucile C, Richheimer S, Beckham CJ (2016) Expression of the long non-coding RNA HOTAIR correlates with disease progression in bladder cancer and is contained in bladder cancer patient urinary exosomes. PLoS ONE 11(1):e0147236. https://doi.org/10.1371/journal.pone.0147236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dijkstra S, Mulders PFA, Schalken JA (2014) Clinical use of novel urine and blood based prostate cancer biomarkers: a review. Clin Biochem 47(10):889–896. https://doi.org/10.1016/j.clinbiochem.2013.10.023

    Article  CAS  PubMed  Google Scholar 

  35. Deras IL, Aubin SM, Blase A, Day JR, Koo S, Partin AW, Ellis WJ, Marks LS, Fradet Y, Rittenhouse H, Groskopf J (2008) PCA3: a molecular urine assay for predicting prostate biopsy outcome. J Urol 179(4):1587–1592. https://doi.org/10.1016/j.juro.2007.11.038

    Article  PubMed  Google Scholar 

  36. Bryzgunova OE, Zaripov MM, Skvortsova TE, Lekchnov EA, Grigor’eva AE, Zaporozhchenko IA, Morozkin ES, Ryabchikova EI, Yurchenko YB, Voitsitskiy VE, Laktionov PP (2016) Comparative study of extracellular vesicles from the urine of healthy individuals and prostate cancer patients. PLoS ONE 11(6):e0157566. https://doi.org/10.1371/journal.pone.0157566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bijnsdorp IV, Geldof AA, Lavaei M, Piersma SR, van Moorselaar RJ, Jimenez CR (2013) Exosomal ITGA3 interferes with non-cancerous prostate cell functions and is increased in urine exosomes of metastatic prostate cancer patients. J Extracell Vesicles. https://doi.org/10.3402/jev.v2i0.22097

    Article  PubMed  PubMed Central  Google Scholar 

  38. Donovan MJ, Noerholm M, Bentink S, Belzer S, Skog J, O’Neill V, Cochran JS, Brown GA (2015) A molecular signature of PCA3 and ERG exosomal RNA from non-DRE urine is predictive of initial prostate biopsy result. Prostate Cancer Prostatic Dis 18(4):370–375. https://doi.org/10.1038/pcan.2015.40

    Article  CAS  PubMed  Google Scholar 

  39. Royo F, Zuniga-Garcia P, Sanchez-Mosquera P, Egia A, Perez A, Loizaga A, Arceo R, Lacasa I, Rabade A, Arrieta E, Bilbao R, Unda M, Carracedo A, Falcon-Perez JM (2016) Different EV enrichment methods suitable for clinical settings yield different subpopulations of urinary extracellular vesicles from human samples. J Extracell Vesicles 5:29497. https://doi.org/10.3402/jev.v5.29497

    Article  CAS  PubMed  Google Scholar 

  40. Neeb A, Hefele S, Bormann S, Parson W, Adams F, Wolf P, Miernik A, Schoenthaler M, Kroenig M, Wilhelm K, Schultze-Seemann W, Nestel S, Schaefer G, Bu H, Klocker H, Nazarenko I, Cato ACB (2014) Splice variant transcripts of the anterior gradient 2 gene as a marker of prostate cancer. Oncotarget 5(18):8681–8689

    PubMed  PubMed Central  Google Scholar 

  41. Skotland T, Ekroos K, Kauhanen D, Simolin H, Seierstad T, Berge V, Sandvig K, Llorente A (2017) Molecular lipid species in urinary exosomes as potential prostate cancer biomarkers. Eur J Cancer 70:122–132. https://doi.org/10.1016/j.ejca.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  42. Yang JS, Lee JC, Byeon SK, Rha KH, Moon MH (2017) Size dependent lipidomic analysis of urinary exosomes from patients with prostate cancer by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Anal Chem 89(4):2488–2496. https://doi.org/10.1021/acs.analchem.6b04634

    Article  CAS  PubMed  Google Scholar 

  43. Yang W-W, Yang L-Q, Zhao F, Chen C-W, Xu L-H, Fu J, Li S-L, Ge X-Y (2017) Epiregulin promotes lung metastasis of salivary adenoid cystic carcinoma. Theranostics 7(15):3700–3714. https://doi.org/10.7150/thno.19712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Rodriguez M, Bajo-Santos C, Hessvik NP, Lorenz S, Fromm B, Berge V, Sandvig K, Line A, Llorente A (2017) Identification of non-invasive miRNAs biomarkers for prostate cancer by deep sequencing analysis of urinary exosomes. Mol Cancer 16(1):156. https://doi.org/10.1186/s12943-017-0726-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yazarlou F, Modarressi MH, Mowla SJ, Oskooei VK, Motevaseli E, Tooli LF, Nekoohesh L, Eghbali M, Ghafouri-Fard S, Afsharpad M (2018) Urinary exosomal expression of long non-coding RNAs as diagnostic marker in bladder cancer. Cancer Manag Res 10:6357–6365. https://doi.org/10.2147/cmar.s186108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kurahashi R, Kadomatsu T, Baba M, Hara C, Itoh H, Miyata K, Endo M, Morinaga J, Terada K, Araki K, Eto M, Schmidt LS, Kamba T, Linehan WM, Oike Y (2019) MicroRNA-204–5p: a novel candidate urinary biomarker of Xp11.2 translocation renal cell carcinoma. Cancer Sci 110(6):1897–1908. https://doi.org/10.1111/cas.14026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Gu C-Y, Huang Y-Q, Han C-T, Zhu Y, Bo D, Meng J, Qin X-J, Ye D-W (2019) Clinical significance of urine prostatic exosomal protein in the diagnosis of prostate cancer. Am J Cancer Res 9(5):1074

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Wang H, Lu Z, Zhao X (2019) Tumorigenesis, diagnosis, and therapeutic potential of exosomes in liver cancer. J Hematol Oncol 12(1):133

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Di Meo A, Batruch I, Brown MD, Yang C, Finelli A, Jewett MAS, Diamandis EP, Yousef GM (2019) Identification of prognostic biomarkers in the urinary peptidome of the small renal mass. Am J Pathol 189(12):2366–2376. https://doi.org/10.1016/j.ajpath.2019.08.015

    Article  CAS  PubMed  Google Scholar 

  50. Lim W, Kim H-S (2019) Exosomes as therapeutic vehicles for cancer. Tissue Eng Regen Med. https://doi.org/10.1007/s13770-019-00190-2

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kurahashi R, Kadomatsu T, Baba M, Hara C, Itoh H, Miyata K, Endo M, Morinaga J, Terada K, Araki K (2019) MicroRNA-204-5p: a novel candidate urinary biomarker of Xp11. 2 translocation renal cell carcinoma. Cancer Sci 110(6):197

    Google Scholar 

  52. Huang T, Song C, Zheng L, Xia L, Li Y, Zhou Y (2019) The roles of extracellular vesicles in gastric cancer development, microenvironment, anti-cancer drug resistance, and therapy. Mol Cancer 18(1):62

    PubMed  PubMed Central  Google Scholar 

  53. Fredsøe J, Rasmussen AK, Mouritzen P, Borre M, Ørntoft T, Sørensen KD (2019) A five-microRNA model (pCaP) for predicting prostate cancer aggressiveness using cell-free urine. Int J Cancer 145(9):2558–2567

    PubMed  Google Scholar 

  54. Scott E, Munkley J (2019) Glycans as biomarkers in prostate cancer. Int J Mol Sci 20(6):1389

    CAS  PubMed Central  Google Scholar 

  55. Munkley J, Mills IG, Elliott DJ (2016) The role of glycans in the development and progression of prostate cancer. Nat Rev Urol 13(6):324

    CAS  PubMed  Google Scholar 

  56. Tkac J, Bertok T, Hires M, Jane E, Lorencova L, Kasak P (2019) Glycomics of prostate cancer: Updates. Expert Rev Proteomics 16(1):65–76

    CAS  PubMed  Google Scholar 

  57. Güllü Amuran G, Tinay I, Filinte D, Ilgin C, Peker Eyüboğlu I, Akkiprik M (2020) Urinary micro-RNA expressions and protein concentrations may differentiate bladder cancer patients from healthy controls. Int Urol Nephrol 52(3):461–468. https://doi.org/10.1007/s11255-019-02328-6

    Article  CAS  PubMed  Google Scholar 

  58. Matsuda A, Kuno A, Yoshida M, Wagatsuma T, Sato T, Miyagishi M, Zhao J, Suematsu M, Kabe Y, Narimatsu H (2020) Comparative glycomic analysis of exosome subpopulations derived from pancreatic cancer cell lines. J Proteome Res 19(6):2516–2524

    CAS  PubMed  Google Scholar 

  59. Royo F, Cossio U, Llop J, Falcón-Pérez JM (2018) Modifications of the glycome of extracellular vesicles affect their biodistribution in mice. J Extracell Vesicles 7:216–217

    Google Scholar 

  60. Song W, Zhou X, Benktander JD, Gaunitz S, Zou G, Wang Z, Novotny MV, Jacobson SC (2019) In-depth compositional and structural characterization of N-Glycans derived from human urinary exosomes. Anal Chem 91(21):13528–13537

    CAS  PubMed  PubMed Central  Google Scholar 

  61. D’Agati VD, Kaskel FJ, Falk RJ (2011) Focal segmental glomerulosclerosis. N Engl J Med 365(25):2398–2411. https://doi.org/10.1056/NEJMra1106556

    Article  CAS  PubMed  Google Scholar 

  62. Gebeshuber CA, Kornauth C, Dong L, Sierig R, Seibler J, Reiss M, Tauber S, Bilban M, Wang S, Kain R, Bohmig GA, Moeller MJ, Grone HJ, Englert C, Martinez J, Kerjaschki D (2013) Focal segmental glomerulosclerosis is induced by microRNA-193a and its downregulation of WT1. Nat Med 19(4):481–487. https://doi.org/10.1038/nm.3142

    Article  CAS  PubMed  Google Scholar 

  63. Huang Z, Zhang Y, Zhou J, Zhang Y (2017) Urinary exosomal miR-193a can be a potential biomarker for the diagnosis of primary focal segmental glomerulosclerosis in children. BioMed Res Int 2017:6. https://doi.org/10.1155/2017/7298160

    Article  CAS  Google Scholar 

  64. Delić D, Eisele C, Schmid R, Baum P, Wiech F, Gerl M, Zimdahl H, Pullen SS, Urquhart R (2016) Urinary exosomal miRNA signature in type II diabetic nephropathy patients. PLoS ONE. https://doi.org/10.1371/journal.pone.0150154

    Article  PubMed  PubMed Central  Google Scholar 

  65. Gudehithlu KP, Hart P, Joshi A, Garcia-Gomez I, Cimbaluk DJ, Dunea G, Arruda JA, Singh AK (2019) Urine exosomal ceruloplasmin: a potential early biomarker of underlying kidney disease. Clin Exp Nephrol 23(8):1013–1021

    CAS  PubMed  Google Scholar 

  66. Solé-Marcé C, Cortés-Hernández J, Vidal M, Felip ML, Ordi-Ros J (2015) THU0377 MIR-29C in urinary exosomes as predictor of early renal fibrosis in lupus nephritis. Ann Rheum Dis 74(Suppl 2):332–333. https://doi.org/10.1136/annrheumdis-2015-eular.4578

    Article  Google Scholar 

  67. Baglio S, Masoumi N, Tsang-a-Sjoe M, Mv Eijndhoven, Heutinck K, Jordanova E, ten Berge R, Grundberg K, Schiffelers R, van den Wetering J, de Wildt K, Verkuijlen S, Roelofs J, Bultink I, Middeldorp J, Voskuyl A, Pegtel D (2018) S2D:5 Exosomes target renal tubular epithelial cells transferring inflammatory epstein–barr virus-encoded small rna (eber1) in lupus nephritis patients. Lupus Sci Med 5(Suppl 1):A8–A9. https://doi.org/10.1136/lupus-2018-abstract.10

    Article  Google Scholar 

  68. Solé-Marcé C, Garcia-Vives E, Agraz I, Ordi-Ros J, Cortés-Hernández J (2019) THU0236 urinary exosomal MIR-31, MIR-107 AND MIR-135B-5P from tubular renal cells as responder biomarker in lupus nephritis. Ann Rheum Dis 78(Suppl 2):395–396. https://doi.org/10.1136/annrheumdis-2019-eular.5346

    Article  Google Scholar 

  69. Garcia-Vives E, Solé C, Moliné T, Vidal M, Agraz I, Ordi-Ros J, Cortés-Hernández J (2020) The urinary exosomal miRNA expression profile is predictive of clinical response in lupus nephritis. Int J Mol Sci 21(4):1372

    CAS  PubMed Central  Google Scholar 

  70. Chen CC, Liu L, Ma F, Wong CW, Guo XE, Chacko JV, Farhoodi HP, Zhang SX, Zimak J, Segaliny A, Riazifar M, Pham V, Digman MA, Pone EJ, Zhao W (2016) Elucidation of exosome migration across the blood-brain barrier model in vitro. Cell Mol Bioeng 9(4):509–529. https://doi.org/10.1007/s12195-016-0458-3

    Article  CAS  PubMed  Google Scholar 

  71. Iliescu FS, Vrtačnik D, Neuzil P, Iliescu C (2019) Microfluidic technology for clinical applications of exosomes. Micromachines 10(6):392

    PubMed Central  Google Scholar 

  72. Contreras-Naranjo JC, Wu H-J, Ugaz VM (2017) Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab Chip 17(21):3558–3577

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Ashcroft BA, de Sonneville J, Yuana Y, Osanto S, Bertina R, Kuil ME, Oosterkamp TH (2012) Determination of the size distribution of blood microparticles directly in plasma using atomic force microscopy and microfluidics. Biomed Microdevices 14(4):641–649. https://doi.org/10.1007/s10544-012-9642-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Kanwar SS, Dunlay CJ, Simeone DM, Nagrath S (2014) Microfluidic device (ExoChip) for on-chip isolation, quantification and characterization of circulating exosomes. Lab Chip 14(11):1891–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Zhang P, He M, Zeng Y (2016) Ultrasensitive microfluidic analysis of circulating exosomes using a nanostructured graphene oxide/polydopamine coating. Lab Chip 16(16):3033–3042

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Vaidyanathan R, Naghibosadat M, Rauf S, Korbie D, Carrascosa LG, Shiddiky MJ, Trau M (2014) Detecting exosomes specifically: a multiplexed device based on alternating current electrohydrodynamic induced nanoshearing. Anal Chem 86(22):11125–11132

    CAS  PubMed  Google Scholar 

  77. Yang X-X, Sun C, Wang L, Guo X-L (2019) New insight into isolation, identification techniques and medical applications of exosomes. J Controlled Release 308:119–129

    CAS  Google Scholar 

  78. Awdishu L, Tsunoda S (2019) Identification of maltase glucoamylase as a biomarker of acute kidney injury in patients with cirrhosis. Crit Care Res Pract 2019:5912804. https://doi.org/10.1155/2019/5912804

    Article  PubMed  PubMed Central  Google Scholar 

  79. Sonoda H, Lee BR, Park KH, Nihalani D, Yoon JH, Ikeda M, Kwon SH (2019) miRNA profiling of urinary exosomes to assess the progression of acute kidney injury. Sci Rep 9(1):4692. https://doi.org/10.1038/s41598-019-40747-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Barros ER, Carvajal CA (2017) Urinary exosomes and their cargo: potential biomarkers for mineralocorticoid arterial hypertension? Front Endocrinol. https://doi.org/10.3389/fendo.2017.00230

    Article  Google Scholar 

  81. Khurana R, Ranches G, Schafferer S, Lukasser M, Rudnicki M (2017) Identification of urinary exosomal noncoding RNAs as novel biomarkers in chronic kidney disease. RNA 23(2):142–152. https://doi.org/10.1261/rna.058834.116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zang J, Maxwell AP, Simpson DA (2019) Differential expression of urinary exosomal microRNAs miR-21-5p and miR-30b-5p in individuals with diabetic kidney disease. Sci Rep 9(1):10900. https://doi.org/10.1038/s41598-019-47504-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Doi T (2019) Involvement of Elf3 on Smad3 activation-dependent injuries in podocytes and excretion of urinary exosome in diabetic nephropathy. PLoS ONE. https://doi.org/10.1371/journal.pone.0216788

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Portuguese Foundation for Science and Technology (FCT), European Union, QREN, FEDER and COMPETE for funding UnIC—Unidade de Investigação Cardiovascular (UIDB/00051/2020 and UIDP/00051/2020), iBiMED (UID/04501/2020, POCI-01-0145-FEDER-007628) and FCT QOPNA ((FCT UID/QUI/00062/2019) and LAQV/REQUIMTE (UIDB/50006/2020) research units. RV is supported by IF/00286/2015 grants. VT is supported by Mahidol University research grant and the Thailand Research Fund (IRN60W0004).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rui Vitorino or Visith Thongboonkerd.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vitorino, R., Ferreira, R., Guedes, S. et al. What can urinary exosomes tell us?. Cell. Mol. Life Sci. 78, 3265–3283 (2021). https://doi.org/10.1007/s00018-020-03739-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03739-w

Keywords

Navigation