Skip to main content
Log in

Aquaporin-3 is involved in NLRP3-inflammasome activation contributing to the setting of inflammatory response

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Inflammasomes are large immune multiprotein complexes that tightly regulate the production of the pro-inflammatory cytokines, being dependent on cell regulatory volume mechanisms. Aquaporins (AQPs) are protein channels that facilitate the transport of water and glycerol (aquaglyceroporins) through membranes, essential for cell volume regulation. Although these membrane proteins are highly expressed in monocytes and macrophages, their role in the inflammatory process is still unclear. Here, we investigated the role of aquaglyceroporin AQP3 in NLRP3-inflammasome activation by complementary approaches based either on shRNA silencing or on AQP3 selective inhibition. The latter has been achieved using a reported potent gold-based inhibitor, Auphen. AQP3 inhibition or silencing partially blocked LPS-priming and decreased production of IL-6, proIL-1β, and TNF-α, suggesting the possible involvement of AQP3 in macrophage priming by Toll-like receptor 4 engagement. Moreover, AQP3-dependent cell reswelling increased IL-1β release through caspase-1 activation. NLRP3-inflammasome activation induced by reswelling, nigericin, and ATP was also blocked when AQP3 was inhibited or silenced. Altogether, these data point towards AQPs as potential players in the setting of the inflammatory response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AQP:

Aquaporin

ATP:

Adenosine triphosphate

Casp-1:

Caspase-1

GSDMD:

Gasdermin D

IL:

Interleukin

NF-κB:

Nuclear factor-κB

NLRP3:

Nucleotide-binding oligomerization domain-like receptors family pyrin domain containing 3

Pf :

Osmotic water permeability

Pgly :

Glycerol permeability

TNF-α:

Tumor necrosis factor alpha

References

  1. Jourdan T, Godlewski G, Cinar R, Bertola A, Szanda G, Liu J, Tam J, Han T, Mukhopadhyay B, Skarulis MC, Ju C, Aouadi M, Czech MP, Kunos G (2013) Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes. Nat Med 19(9):1132–1140. https://doi.org/10.1038/nm.3265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Luo B, Li B, Wang W, Liu X, Xia Y, Zhang C, Zhang M, Zhang Y, An F (2014) NLRP3 gene silencing ameliorates diabetic cardiomyopathy in a type 2 diabetes rat model. PLoS ONE 9(8):e104771. https://doi.org/10.1371/journal.pone.0104771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mehal WZ (2014) The inflammasome in liver injury and non-alcoholic fatty liver disease. Dig Dis 32(5):507–515. https://doi.org/10.1159/000360495

    Article  PubMed  Google Scholar 

  4. Zhang J, Xia L, Zhang F, Zhu D, Xin C, Wang H, Zhang F, Guo X, Lee Y, Zhang L, Wang S, Guo X, Huang C, Gao F, Liu Y, Tao L (2017) A novel mechanism of diabetic vascular endothelial dysfunction: hypoadiponectinemia-induced NLRP3 inflammasome activation. Biochim Biophys Acta 1863 6:1556–1567. https://doi.org/10.1016/j.bbadis.2017.02.012

    Article  CAS  Google Scholar 

  5. Chen Y, He X, Yuan X, Hong J, Bhat O, Li G, Li PL, Guo J (2018) NLRP3 Inflammasome formation and activation in nonalcoholic steatohepatitis: therapeutic target for antimetabolic syndrome remedy FTZ. Oxid Med Cell Longe 2018:2901871. https://doi.org/10.1155/2018/2901871

    Article  CAS  Google Scholar 

  6. Janeway CA Jr (1992) The immune system evolved to discriminate infectious nonself from noninfectious self. Immunol Today 13(1):11–16. https://doi.org/10.1016/0167-5699(92)90198-G

    Article  CAS  PubMed  Google Scholar 

  7. Ishii KJ, Suzuki K, Coban C, Takeshita F, Itoh Y, Matoba H, Kohn LD, Klinman DM (2001) Genomic DNA released by dying cells induces the maturation of APCs. Journal of immunology 167(5):2602–2607

    Article  CAS  Google Scholar 

  8. Martinon F, Petrilli V, Mayor A, Tardivel A, Tschopp J (2006) Gout-associated uric acid crystals activate the NALP3 inflammasome. Nature 440(7081):237–241. https://doi.org/10.1038/nature04516

    Article  CAS  PubMed  Google Scholar 

  9. Bauernfeind FG, Horvath G, Stutz A, Alnemri ES, MacDonald K, Speert D, Fernandes-Alnemri T, Wu J, Monks BG, Fitzgerald KA, Hornung V, Latz E (2009) Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. Journal of immunology 183(2):787–791. https://doi.org/10.4049/jimmunol.0901363

    Article  CAS  Google Scholar 

  10. Evavold CL, Ruan J, Tan Y, Xia S, Wu H, Kagan JC (2018) The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48(1):35–44. https://doi.org/10.1016/j.immuni.2017.11.013 ((e36))

    Article  CAS  PubMed  Google Scholar 

  11. Compan V, Baroja-Mazo A, Lopez-Castejon G, Gomez AI, Martinez CM, Angosto D, Montero MT, Herranz AS, Bazan E, Reimers D, Mulero V, Pelegrin P (2012) Cell volume regulation modulates NLRP3 inflammasome activation. Immunity 37(3):487–500. https://doi.org/10.1016/j.immuni.2012.06.013

    Article  CAS  PubMed  Google Scholar 

  12. Lima H Jr, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F, Lisanti MP, Brojatsch J (2013) Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle 12(12):1868–1878. https://doi.org/10.4161/cc.24903

    Article  CAS  PubMed  Google Scholar 

  13. Munoz-Planillo R, Kuffa P, Martinez-Colon G, Smith BL, Rajendiran TM, Nunez G (2013) K(+) efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38(6):1142–1153. https://doi.org/10.1016/j.immuni.2013.05.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hafner-Bratkovic I, Pelegrin P (2018) Ion homeostasis and ion channels in NLRP3 inflammasome activation and regulation. Curr Opin Immunol 52:8–17. https://doi.org/10.1016/j.coi.2018.03.010

    Article  CAS  PubMed  Google Scholar 

  15. Schorn C, Frey B, Lauber K, Janko C, Strysio M, Keppeler H, Gaipl US, Voll RE, Springer E, Munoz LE, Schett G, Herrmann M (2011) Sodium overload and water influx activate the NALP3 inflammasome. J Biol Chem 286(1):35–41. https://doi.org/10.1074/jbc.M110.139048

    Article  CAS  PubMed  Google Scholar 

  16. Boyle JP, Bryant CE, Monie TP (2013) Cell swelling and the NLRP3 inflammasome. Immunity 38(3):399. https://doi.org/10.1016/j.immuni.2013.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rabolli V, Wallemme L, Lo Re S, Uwambayinema F, Palmai-Pallag M, Thomassen L, Tyteca D, Octave JN, Marbaix E, Lison D, Devuyst O, Huaux F (2014) Critical role of aquaporins in interleukin 1beta (IL-1beta)-induced inflammation. J Biol Chem 289(20):13937–13947. https://doi.org/10.1074/jbc.M113.534594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Meli R, Pirozzi C, Pelagalli A (2018) New perspectives on the potential role of aquaporins (AQPs) in the physiology of inflammation. Front Physiol 9:101. https://doi.org/10.3389/fphys.2018.00101

    Article  PubMed  PubMed Central  Google Scholar 

  19. King LS, Kozono D, Agre P (2004) From structure to disease: the evolving tale of aquaporin biology. Nat Rev Mol Cell Biol 5(9):687–698. https://doi.org/10.1038/nrm1469

    Article  CAS  PubMed  Google Scholar 

  20. Carbrey JM, Agre P (2009) Discovery of the aquaporins and development of the field. Handb Exp Pharmacol 190:3–28. https://doi.org/10.1007/978-3-540-79885-9_1

    Article  CAS  Google Scholar 

  21. Yasui M, Hazama A, Kwon TH, Nielsen S, Guggino WB, Agre P (1999) Rapid gating and anion permeability of an intracellular aquaporin. Nature 402(6758):184–187. https://doi.org/10.1038/46045

    Article  CAS  PubMed  Google Scholar 

  22. Soria LR, Fanelli E, Altamura N, Svelto M, Marinelli RA, Calamita G (2010) Aquaporin-8-facilitated mitochondrial ammonia transport. Biochem Biophys Res Commun 393(2):217–221. https://doi.org/10.1016/j.bbrc.2010.01.104

    Article  CAS  PubMed  Google Scholar 

  23. Verkman AS (2005) More than just water channels: unexpected cellular roles of aquaporins. J Cell Sci 118(Pt 15):3225–3232. https://doi.org/10.1242/jcs.02519

    Article  CAS  PubMed  Google Scholar 

  24. Madeira A, Fernandez-Veledo S, Camps M, Zorzano A, Moura TF, Ceperuelo-Mallafre V, Vendrell J, Soveral G (2014) Human aquaporin-11 is a water and glycerol channel and localizes in the vicinity of lipid droplets in human adipocytes. Obesity 22(9):2010–2017. https://doi.org/10.1002/oby.20792

    Article  CAS  PubMed  Google Scholar 

  25. Miller EW, Dickinson BC, Chang CJ (2010) Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc Natl Acad Sci USA 107(36):15681–15686. https://doi.org/10.1073/pnas.1005776107

    Article  PubMed  Google Scholar 

  26. Bertolotti M, Bestetti S, Garcia-Manteiga JM, Medrano-Fernandez I, Dal Mas A, Malosio ML, Sitia R (2013) Tyrosine kinase signal modulation: a matter of H2O2 membrane permeability? Antioxid Redox Signal 19(13):1447–1451. https://doi.org/10.1089/ars.2013.5330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Rodrigues C, Pimpao C, Mosca AF, Coxixo AS, Lopes D, da Silva IV, Pedersen PA, Antunes F, Soveral G (2019) Human aquaporin-5 facilitates hydrogen peroxide permeation affecting adaption to oxidative stress and cancer cell migration. Cancers. https://doi.org/10.3390/cancers11070932

    Article  PubMed  PubMed Central  Google Scholar 

  28. Watanabe S, Moniaga CS, Nielsen S, Hara-Chikuma M (2016) Aquaporin-9 facilitates membrane transport of hydrogen peroxide in mammalian cells. Biochem Biophys Res Commun 471(1):191–197. https://doi.org/10.1016/j.bbrc.2016.01.153

    Article  CAS  PubMed  Google Scholar 

  29. Soveral G, Nielsen S, Casini A (2016) Aquaporins in health and disease: new molecular targets for drug discovery. CRC Press, Taylor & Francis Group, Boca Raton, FL

    Book  Google Scholar 

  30. Soveral G, Casini A (2017) Aquaporin modulators: a patent review (2010–2015). Expert Opin Ther Pat 27(1):49–62. https://doi.org/10.1080/13543776.2017.1236085

    Article  CAS  PubMed  Google Scholar 

  31. Aikman B, de Almeida A, Meier-Menches SM, Casini A (2018) Aquaporins in cancer development: opportunities for bioinorganic chemistry to contribute novel chemical probes and therapeutic agents. Metallomics 10(5):696–712. https://doi.org/10.1039/c8mt00072g

    Article  CAS  PubMed  Google Scholar 

  32. Verkman AS (2012) Aquaporins in clinical medicine. Annu Rev Med 63:303–316. https://doi.org/10.1146/annurev-med-043010-193843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ishibashi K, Kuwahara M, Gu Y, Tanaka Y, Marumo F, Sasaki S (1998) Cloning and functional expression of a new aquaporin (AQP9) abundantly expressed in the peripheral leukocytes permeable to water and urea, but not to glycerol. Biochem Biophys Res Commun 244(1):268–274. https://doi.org/10.1006/bbrc.1998.8252

    Article  CAS  PubMed  Google Scholar 

  34. Moon C, Rousseau R, Soria JC, Hoque MO, Lee J, Jang SJ, Trink B, Sidransky D, Mao L (2004) Aquaporin expression in human lymphocytes and dendritic cells. Am J Hematol 75(3):128–133. https://doi.org/10.1002/ajh.10476

    Article  CAS  PubMed  Google Scholar 

  35. da Silva IV, Rodrigues JS, Rebelo I, Miranda JPG, Soveral G (2018) Revisiting the metabolic syndrome: the emerging role of aquaglyceroporins. Cell Mol Life Sci: CMLS 75(11):1973–1988. https://doi.org/10.1007/s00018-018-2781-4

    Article  CAS  PubMed  Google Scholar 

  36. da Silva IV, Soveral G (2017) Aquaporins in obesity. Adv Exp Med Biol 969:227–238. https://doi.org/10.1007/978-94-024-1057-0_15

    Article  CAS  PubMed  Google Scholar 

  37. Jablonski EM, Webb AN, McConnell NA, Riley MC, Hughes FM Jr (2004) Plasma membrane aquaporin activity can affect the rate of apoptosis but is inhibited after apoptotic volume decrease. Am J Physiol Cell Physiol 286(4):C975-985. https://doi.org/10.1152/ajpcell.00180.2003

    Article  CAS  PubMed  Google Scholar 

  38. Zhu N, Feng X, He C, Gao H, Yang L, Ma Q, Guo L, Qiao Y, Yang H, Ma T (2011) Defective macrophage function in aquaporin-3 deficiency. FASEB J: Off Publ Fed Am Soc Exp Biol 25(12):4233–4239. https://doi.org/10.1096/fj.11-182808

    Article  CAS  Google Scholar 

  39. Holm A, Karlsson T, Vikstrom E (2015) Pseudomonas aeruginosa lasI/rhlI quorum sensing genes promote phagocytosis and aquaporin 9 redistribution to the leading and trailing regions in macrophages. Front Microbiol 6:915. https://doi.org/10.3389/fmicb.2015.00915

    Article  PubMed  PubMed Central  Google Scholar 

  40. Holm A, Magnusson KE, Vikstrom E (2016) Pseudomonas aeruginosa N-3-oxo-dodecanoyl-homoserine lactone elicits changes in cell volume, morphology, and AQP9 characteristics in macrophages. Front Cell infect Microbiol 6:32. https://doi.org/10.3389/fcimb.2016.00032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Martins AP, Marrone A, Ciancetta A, Galan Cobo A, Echevarria M, Moura TF, Re N, Casini A, Soveral G (2012) Targeting aquaporin function: potent inhibition of aquaglyceroporin-3 by a gold-based compound. PLoS ONE 7(5):e37435. https://doi.org/10.1371/journal.pone.0037435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Serna A, Galan-Cobo A, Rodrigues C, Sanchez-Gomar I, Toledo-Aral JJ, Moura TF, Casini A, Soveral G, Echevarria M (2014) Functional inhibition of aquaporin-3 with a gold-based compound induces blockage of cell proliferation. J Cell Physiol 229(11):1787–1801. https://doi.org/10.1002/jcp.24632

    Article  CAS  PubMed  Google Scholar 

  43. de Almeida A, Martins AP, Mosca AF, Wijma HJ, Prista C, Soveral G, Casini A (2016) Exploring the gating mechanisms of aquaporin-3: new clues for the design of inhibitors? Mol BioSyst 12(5):1564–1573. https://doi.org/10.1039/c6mb00013d

    Article  PubMed  Google Scholar 

  44. de Almeida A, Mosca AF, Wragg D, Wenzel M, Kavanagh P, Barone G, Leoni S, Soveral G, Casini A (2017) The mechanism of aquaporin inhibition by gold compounds elucidated by biophysical and computational methods. Chem Commun 53(27):3830–3833. https://doi.org/10.1039/c7cc00318h

    Article  Google Scholar 

  45. Madeira A, Moura TF, Soveral G (2016) Detecting aquaporin function and regulation. Front Chem 4:3. https://doi.org/10.3389/fchem.2016.00003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Perregaux D, Gabel CA (1994) Interleukin-1 beta maturation and release in response to ATP and nigericin. Evidence that potassium depletion mediated by these agents is a necessary and common feature of their activity. J Biol Chem 269(21):15195–15203

    Article  CAS  Google Scholar 

  47. Laforenza U, Bottino C, Gastaldi G (2016) Mammalian aquaglyceroporin function in metabolism. Biochem Biophys Acta 1858 1:1–11. https://doi.org/10.1016/j.bbamem.2015.10.004

    Article  CAS  Google Scholar 

  48. da Silva IV, Cardoso C, Mendez-Gimenez L, Camoes SP, Fruhbeck G, Rodriguez A, Miranda JP, Soveral G (2020) Aquaporin-7 and aquaporin-12 modulate the inflammatory phenotype of endocrine pancreatic beta-cells. Arch Biochem Biophys 691:108481. https://doi.org/10.1016/j.abb.2020.108481

    Article  CAS  PubMed  Google Scholar 

  49. Broz P, Pelegrin P, Shao F (2019) The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. https://doi.org/10.1038/s41577-019-0228-2

    Article  PubMed  Google Scholar 

  50. Day RE, Kitchen P, Owen DS, Bland C, Marshall L, Conner AC, Bill RM, Conner MT (2020) Human aquaporins: regulators of transcellular water flow. Biochem Biophys Acta 1840 5:1492–1506. https://doi.org/10.1016/j.bbagen.2013.09.033

    Article  CAS  Google Scholar 

  51. Gross CJ, Mishra R, Schneider KS, Medard G, Wettmarshausen J, Dittlein DC, Shi H, Gorka O, Koenig PA, Fromm S, Magnani G, Cikovic T, Hartjes L, Smollich J, Robertson AAB, Cooper MA, Schmidt-Supprian M, Schuster M, Schroder K, Broz P, Traidl-Hoffmann C, Beutler B, Kuster B, Ruland J, Schneider S, Perocchi F, Gross O (2016) K(+) Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45(4):761–773. https://doi.org/10.1016/j.immuni.2016.08.010

    Article  CAS  PubMed  Google Scholar 

  52. Tsakiri N, Kimber I, Rothwell NJ, Pinteaux E (2008) Mechanisms of interleukin-6 synthesis and release induced by interleukin-1 and cell depolarisation in neurones. Mol Cell Neurosci 37(1):110–118. https://doi.org/10.1016/j.mcn.2007.09.001

    Article  CAS  PubMed  Google Scholar 

  53. Delporte C, Virreira M, Crutzen R, Louchami K, Sener A, Malaisse WJ, Beauwens R (2009) Functional role of aquaglyceroporin 7 expression in the pancreatic beta-cell line BRIN-BD11. J Cell Physiol 221(2):424–429. https://doi.org/10.1002/jcp.21872

    Article  CAS  PubMed  Google Scholar 

  54. Arsenijevic T, Perret J, Van Laethem JL, Delporte C (2019) Aquaporins involvement in pancreas physiology and in pancreatic diseases. Int J Mol Sci. https://doi.org/10.3390/ijms20205052

    Article  PubMed  PubMed Central  Google Scholar 

  55. Louchami K, Best L, Brown P, Virreira M, Hupkens E, Perret J, Devuyst O, Uchida S, Delporte C, Malaisse WJ, Beauwens R, Sener A (2012) A new role for aquaporin 7 in insulin secretion. Cellular Physiol Biochem: Int J Exp Cell Physiol Biochem Pharmacol 29(1–2):65–74. https://doi.org/10.1159/000337588

    Article  CAS  Google Scholar 

  56. Abbate F, Orioli P, Bruni B, Marcon G, Messori L (2000) Crystal structure and solution chemistry of the cytotoxic complex 1,2-dichloro(o-phenanthroline) gold(III) chloride. Inorg Chim Acta 311(1–2):1–5. https://doi.org/10.1016/S0020-1693(00)00299-1

    Article  CAS  Google Scholar 

  57. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408. https://doi.org/10.1006/meth.2001.1262

    Article  CAS  Google Scholar 

  58. Fleige S, Pfaffl MW (2006) RNA integrity and the effect on the real-time qRT-PCR performance. Mol Aspects Med 27(2–3):126–139. https://doi.org/10.1016/j.mam.2005.12.003

    Article  CAS  PubMed  Google Scholar 

  59. da Silva IV, Barroso M, Moura T, Castro R, Soveral G (2018) Endothelial aquaporins and hypomethylation: potential implications for atherosclerosis and cardiovascular disease. Int J Mol Sci. https://doi.org/10.3390/ijms19010130

    Article  PubMed  PubMed Central  Google Scholar 

  60. Madeira A, Mosca AF, Moura TF, Soveral G (2015) Aquaporin-5 is expressed in adipocytes with implications in adipose differentiation. IUBMB Life 67(1):54–60. https://doi.org/10.1002/iub.1345

    Article  CAS  PubMed  Google Scholar 

  61. Madeira A, Camps M, Zorzano A, Moura TF, Soveral G (2013) Biophysical assessment of human aquaporin-7 as a water and glycerol channel in 3T3-L1 adipocytes. PLoS ONE 8(12):e83442. https://doi.org/10.1371/journal.pone.0083442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was funded by Fundação para a Ciência e Tecnologia (FCT), Portugal, through individual fellowship to IV da Silva (PD/BD/113634/2015), grant PTDC/BTM-SAL/28977/2017, and strategic projects UID/DTP/04138/2019, and by Ministerio de Economía, Industria y Competitividad, Spain (grant SAF2017‐88276‐R to P.P.), Fundación Séneca (grant 20859/PI/18 to P.P.), and the European Research Council (ERC‐2013‐CoG grant 614578 to P.P.). We appreciate Veit Hournung (Ludwig Maximilians Universitat Munchen, Germany) for THP-1 Casp-1 KO cells. We thank María Carmen Baños and Ana I. Gómez-Sánchez (IMIB-Arrixaca, Murcia, Spain) for technical assistance, and EU COST Action BM1406 for fruitful discussions and short-term scientific mission for I.V.S..

Author information

Authors and Affiliations

Authors

Contributions

IVS, PP, and GS contributed for the experimental planning; IVS, CC, and HM-B. performed the experiments; IVS analyzed the data; GS, PP, and AC contributed to reagents/materials/analysis tools; IVS wrote the main manuscript; PP and GS contributed to the intellectual input and scientific discussion, and edited the main manuscript; and, all authors read and approved the final manuscript.

Corresponding authors

Correspondence to Pablo Pelegrín or Graça Soveral.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, I.V., Cardoso, C., Martínez-Banaclocha, H. et al. Aquaporin-3 is involved in NLRP3-inflammasome activation contributing to the setting of inflammatory response. Cell. Mol. Life Sci. 78, 3073–3085 (2021). https://doi.org/10.1007/s00018-020-03708-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03708-3

Keywords

Navigation