Skip to main content
Log in

Emerging molecular functions and novel roles for the DEAD-box protein Dbp5/DDX19 in gene expression

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The DEAD-box protein (DBP) Dbp5, a member of the superfamily II (SFII) helicases, has multiple reported roles in gene expression. First identified as an essential regulator of mRNA export in Saccharomyces cerevisiae, the enzyme now has reported functions in non-coding RNA export, translation, transcription, and DNA metabolism. Localization of the protein to various cellular compartments (nucleoplasm, nuclear envelope, and cytoplasm) highlights the ability of Dbp5 to modulate different stages of the RNA lifecycle. While Dbp5 has been well studied for > 20 years, several critical questions remain regarding the mechanistic principles that govern Dbp5 localization, substrate selection, and functions in gene expression. This review aims to take a holistic view of the proposed functions of Dbp5 and evaluate models that accommodate current published data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Linder P (2006) Dead-box proteins: a family affair—active and passive players in RNP-remodeling. Nucleic Acids Res 34(15):4168–4180

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Linder P, Jankowsky E (2011) From unwinding to clamping—the DEAD box RNA helicase family. Nat Rev Mol Cell Biol 12(8):505–516

    CAS  PubMed  Google Scholar 

  3. Sträßer K et al (2002) TREX is a conserved complex coupling transcription with messenger RNA export. Nature 417(6886):304–308

    PubMed  Google Scholar 

  4. Jensen TH et al (2001) The DECD box putative ATPase Sub2p is an early mRNA export factor. CurrBiol 11(21):1711–1715

    CAS  Google Scholar 

  5. Tseng SSI et al (1998) Dbp5p, a cytosolic RNA helicase, is required for poly (A)+ RNA export. EMBO J 17(9):2651–2662

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmitt C et al (1999) Dbp5, a DEAD-box protein required for mRNA export, is recruited to the cytoplasmic fibrils of nuclear pore complex via a conserved interaction with CAN/Nup159p. EMBO J 18(15):4332–4347

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Reed R, Cheng H (2005) TREX, SR proteins and export of mRNA. CurrOpin Cell Biol 17(3):269–273

    CAS  Google Scholar 

  8. Hodge CA et al (2011) The Dbp5 cycle at the nuclear pore complex during mRNA export I: dbp5 mutants with defects in RNA binding and ATP hydrolysis define key steps for Nup159 and Gle1. Genes Dev 25(10):1052–1064

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Tran EJ et al (2007) The DEAD-box protein Dbp5 controls mRNA export by triggering specific RNA: protein remodeling events. Mol Cell 28(5):850–859

    CAS  PubMed  Google Scholar 

  10. Weirich CS et al (2006) Activation of the DExD/H-box protein Dbp5 by the nuclear-pore protein Gle1 and its coactivatorInsP 6 is required for mRNA export. Nat Cell Biol 8(7):668–676

    CAS  PubMed  Google Scholar 

  11. Noble KN et al (2011) The Dbp5 cycle at the nuclear pore complex during mRNA export II: nucleotide cycling and mRNPremodeling by Dbp5 are controlled by Nup159 and Gle1. Genes Dev 25(10):1065–1077

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lund MK, Guthrie C (2005) The DEAD-box protein Dbp5p is required to dissociate Mex67p from exported mRNPs at the nuclear rim. Mol cell 20(4):645–651

    CAS  PubMed  Google Scholar 

  13. Sträßer K, Hurt E (2001) Splicing factor Sub2p is required for nuclear mRNA export through its interaction with Yra1p. Nature 413(6856):648–652

    PubMed  Google Scholar 

  14. Kaminski T, Siebrasse JP, Kubitscheck U (2013) A single molecule view on Dbp5 and mRNA at the nuclear pore. Nucleus 4(1):8–13

    PubMed  PubMed Central  Google Scholar 

  15. Lari A et al (2019) A nuclear role for the DEAD-box protein Dbp5 in tRNA export. eLife 8:e48410

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Ferrezuelo F et al (2002) Biogenesis of yeast telomerase depends on the importin mtr10. Mol Cell Biol 22(17):6046–6055

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kramer EB, Hopper AK (2013) Retrograde transfer RNA nuclear import provides a new level of tRNA quality control in Saccharomyces cerevisiae. ProcNatlAcadSci 110(52):21042–21047

    CAS  Google Scholar 

  18. Beißel C, Grosse S, Krebber H (2020) Dbp5/DDX19 between translational readthrough and nonsense mediated decay. Int J MolSci 21(3):1085

    Google Scholar 

  19. Tieg B, Krebber H (2013) Dbp5—from nuclear export to translation. BiochimBiophysActa Gene RegulMech 1829(8):791–798

    CAS  Google Scholar 

  20. Reed R (2003) Coupling transcription, splicing and mRNA export. CurrOpin Cell Biol 15(3):326–331

    CAS  Google Scholar 

  21. Liu F, Putnam A, Jankowsky E (2008) ATP hydrolysis is required for DEAD-box protein recycling but not for duplex unwinding. ProcNatlAcadSci 105(51):20209–20214

    CAS  Google Scholar 

  22. Aitchison JD, Rout MP (2012) The yeast nuclear pore complex and transport through it. Genetics 190(3):855–883

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Montpetit B et al (2011) A conserved mechanism of DEAD-box ATPase activation by nucleoporins and InsP 6 in mRNA export. Nature 472(7342):238–242

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Wong EV et al (2016) Pi release limits the intrinsic and RNA-stimulated ATPase cycles of DEAD-box protein 5 (Dbp5). J MolBiol 428(2):492–508

    CAS  Google Scholar 

  25. Nielsen KH et al (2009) Mechanism of ATP turnover inhibition in the EJC. RNA 15(1):67–75

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Linder P, Fuller-Pace FV (2013) Looking back on the birth of DEAD-box RNA helicases. BiochimBiophysActa Gene RegulMech 1829(8):750–755

    CAS  Google Scholar 

  27. Dossani ZY et al (2009) Structure of the C-terminus of the mRNA export factor Dbp5 reveals the interaction surface for the ATPase activator Gle1. ProcNatlAcadSci 106(38):16251–16256

    CAS  Google Scholar 

  28. Collins R et al (2009) The DEXD/H-box RNA helicase DDX19 is regulated by an α-helical switch. J BiolChem 284(16):10296–10300

    CAS  Google Scholar 

  29. Wong EV, Gray S, Cao W, Montpetit R, Montpetit B, Enrique M (2018) Nup159 weakens Gle1 binding to Dbp5 but does not accelerate ADP release. J MolBiol 430(14):2080–2095

    CAS  Google Scholar 

  30. Alcázar-Román AR et al (2006) Inositol hexakisphosphate and Gle1 activate the DEAD-box protein Dbp5 for nuclear mRNA export. Nat Cell Biol 8(7):711–716

    PubMed  Google Scholar 

  31. Rozen F et al (1990) Bidirectional RNA helicase activity of eucaryotic translation initiation factors 4A and 4F. Mol Cell Biol 10(3):1134–1144

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Rogers GW, Richter NJ, Merrick WC (1999) Biochemical and kinetic characterization of the RNA helicase activity of eukaryotic initiation factor 4A. J BiolChem 274(18):12236–12244

    CAS  Google Scholar 

  33. Von Moeller H, Basquin C, Conti E (2009) The mRNA export protein DBP5 binds RNA and the cytoplasmic nucleoporin NUP214 in a mutually exclusive manner. Nat StructMolBiol 16(3):247

    Google Scholar 

  34. Weirich CS et al (2004) The N-terminal domain of Nup159 forms a β-propeller that functions in mRNA export by tethering the helicase Dbp5 to the nuclear pore. Mol Cell 16(5):749–760

    CAS  PubMed  Google Scholar 

  35. Hodge CA et al (1999) Rat8p/Dbp5p is a shuttling transport factor that interacts with Rat7p/Nup159p and Gle1p and suppresses the mRNA export defect of xpo1-1 cells. EMBO J 18(20):5778–5788

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Strahm Y et al (1999) The RNA export factor Gle1p is located on the cytoplasmic fibrils of the NPC and physically interacts with the FG-nucleoporin Rip1p, the DEAD-box protein Rat8p/Dbp5p and a new protein Ymr255p. EMBO J 18(20):5761–5777

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Adams RL et al (2017) Nup42 and IP6 coordinate Gle1 stimulation of Dbp5/DDX19B for mRNA export in yeast and human cells. Traffic 18(12):776–790

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Alcázar-Román AR, Bolger TA, Wente SR (2010) Control of mRNA export and translation termination by inositol hexakisphosphate requires specific interaction with Gle1. J BiolChem 285(22):16683–16692

    Google Scholar 

  39. Bolger TA et al (2008) The mRNA export factor Gle1 and inositol hexakisphosphate regulate distinct stages of translation. Cell 134(4):624–633

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Rayala HJ et al (2004) The mRNA export factor human Gle1 interacts with the nuclear pore complex protein Nup155. Mol Cell Proteomics 3(2):145–155

    CAS  PubMed  Google Scholar 

  41. Harms U et al (2014) eIF4B, eIF4G and RNA regulate eIF4A activity in translation initiation by modulating the eIF4A conformational cycle. Nucleic Acids Res 42(12):7911–7922

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Marintchev A et al (2009) Topology and regulation of the human eIF4A/4G/4H helicase complex in translation initiation. Cell 136(3):447–460

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Schütz P et al (2008) Crystal structure of the yeast eIF4A-eIF4G complex: an RNA-helicase controlled by protein–protein interactions. ProcNatlAcadSci 105(28):9564–9569

    Google Scholar 

  44. Smith C et al (2015) In vivo single-particle imaging of nuclear mRNA export in budding yeast demonstrates an essential role for Mex67p. J Cell Biol 211(6):1121–1130

    PubMed  PubMed Central  Google Scholar 

  45. Heinrich S et al (2017) Temporal and spatial regulation of mRNA export: single particle RNA-imaging provides new tools and insights. BioEssays 39(2):1600124

    Google Scholar 

  46. Grünwald D, Singer RH (2010) In vivo imaging of labelled endogenous β-actin mRNA during nucleocytoplasmic transport. Nature 467(7315):604–607

    PubMed  PubMed Central  Google Scholar 

  47. Murphy R, Wente SR (1996) An RNA-export mediator with an essential nuclear export signal. Nature 383(6598):357–360

    CAS  PubMed  Google Scholar 

  48. Sengoku T et al (2006) Structural basis for RNA unwinding by the DEAD-box protein Drosophila Vasa. Cell 125(2):287–300

    CAS  PubMed  Google Scholar 

  49. Andersen CB et al (2006) Structure of the exon junction core complex with a trapped DEAD-box ATPase bound to RNA. Science 313(5795):1968–1972

    CAS  PubMed  Google Scholar 

  50. Bono F et al (2006) The crystal structure of the exon junction complex reveals how it maintains a stable grip on mRNA. Cell 126(4):713–725

    CAS  PubMed  Google Scholar 

  51. Ballut L et al (2005) The exon junction core complex is locked onto RNA by inhibition of eIF4AIII ATPase activity. Nat StructMolBiol 12(10):861–869

    CAS  Google Scholar 

  52. Neumann B et al (2016) Nuclear export of pre-ribosomal subunits requires Dbp5, but not as an RNA-helicase as for mRNA export. PLoS ONE 11(2):e0149571

    PubMed  PubMed Central  Google Scholar 

  53. Derrer CP et al (2019) The RNA export factor Mex67 functions as a mobile nucleoporin. J Cell Biol 218(12):3967–3976

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Singh G et al (2015) The clothes make the mRNA: past and present trends in mRNP fashion. Annu Rev Biochem 84:325–354

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Lin DH, Hoelz A (2019) The structure of the nuclear pore complex (an update). Annu Rev Biochem 88:725–783

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng C, Fasken MB, Marshall NJ, Brockmann C, Rubinson ME, Wente SR, Corbett AH, Stewart M (2010) Structural basis for the function of the Saccharomyces cerevisiae Gfd1 protein in mRNA nuclear export. J BiolChem 285(27):20704–20715

    CAS  Google Scholar 

  57. Wu H, Becker D, Krebber H (2014) Telomerase RNA TLC1 shuttling to the cytoplasm requires mRNA export factors and is important for telomere maintenance. Cell Rep 8(6):1630–1638

    CAS  PubMed  Google Scholar 

  58. Chatterjee K et al (2017) Sharing the load: Mex67–Mtr2 cofunctions with Los1 in primary tRNA nuclear export. Genes Dev 31(21):2186–2198

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Faza MB et al (2012) Role of Mex67-Mtr2 in the nuclear export of 40S pre-ribosomes. PLoS Genet 8(8):e1002915

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Katahira J et al (1999) The Mex67p-mediated nuclear mRNA export pathway is conserved from yeast to human. EMBO J 18(9):2593–2609

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Segref A et al (1997) Mex67p, a novel factor for nuclear mRNA export, binds to both poly (A)+ RNA and nuclear pores. EMBO J 16(11):3256–3271

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Sträßer K, Baßler J, Hurt E (2000) Binding of the Mex67p/Mtr2p heterodimer to FXFG, GLFG, and FG repeat nucleoporins is essential for nuclear mRNA export. J Cell Biol 150(4):695–706

    PubMed  PubMed Central  Google Scholar 

  63. Yao W, Lutzmann M, Hurt E (2008) A versatile interaction platform on the Mex67–Mtr2 receptor creates an overlap between mRNA and ribosome export. EMBO J 27(1):6–16

    CAS  PubMed  Google Scholar 

  64. Yao W et al (2007) Nuclear export of ribosomal 60S subunits by the general mRNA export receptor Mex67-Mtr2. Mol Cell 26(1):51–62

    CAS  PubMed  Google Scholar 

  65. Katahira J (2012) mRNA export and the TREX complex. BiochimBiophysActa Gene RegulMech 1819(6):507–513

    CAS  Google Scholar 

  66. Zhao J et al (2002) The mRNA export factor Dbp5 is associated with Balbiani ring mRNP from gene to cytoplasm. EMBO J 21(5):1177–1187

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Estruch F, Cole CN (2003) An early function during transcription for the yeast mRNA export factor Dbp5p/Rat8p suggested by its genetic and physical interactions with transcription factor IIH components. MolBiol Cell 14(4):1664–1676

    CAS  Google Scholar 

  68. Estruch F et al (2012) Insights into mRNP biogenesis provided by new genetic interactions among export and transcription factors. BMC Genet 13(1):80

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Blobel G (1985) Gene gating: a hypothesis. ProcNatlAcadSci 82(24):8527–8529

    CAS  Google Scholar 

  70. Hodroj D et al (2017) An ATR-dependent function for the Ddx19 RNA helicase in nuclear R-loop metabolism. EMBO J 36(9):1182–1198

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Izawa S et al (2005) Characterization of Rat8 localization and mRNA export in Saccharomyces cerevisiae during the brewing of Japanese sake. ApplMicrobiolBiotechnol 69(1):86–91

    CAS  Google Scholar 

  72. Takemura R, Inoue Y, Izawa S (2004) Stress response in yeast mRNA export factor: reversible changes in Rat8p localization are caused by ethanol stress but not heat shock. J Cell Sci 117(18):4189–4197

    CAS  PubMed  Google Scholar 

  73. Albuquerque CP et al (2008) A multidimensional chromatography technology for in-depth phosphoproteome analysis. Mol Cell Proteomics 7(7):1389–1396

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Li X et al (2007) Large-scale phosphorylation analysis of α-factor-arrested Saccharomyces cerevisiae. J Proteome Res 6(3):1190–1197

    CAS  PubMed  Google Scholar 

  75. Hegazy YA, Fernando CM, Tran EJ (2020) The balancing act of R-loop biology: the good, the bad, and the ugly. J BiolChem 295(4):905–913

    CAS  Google Scholar 

  76. Mersaoui SY et al (2019) Arginine methylation of the DDX 5 helicase RGG/RG motif by PRMT 5 regulates resolution of RNA: DNA hybrids. EMBO J 38(15):e100986

    PubMed  PubMed Central  Google Scholar 

  77. Cloutier SC et al (2016) Regulated formation of lncRNA-DNA hybrids enables faster transcriptional induction and environmental adaptation. Mol Cell 61(3):393–404

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Tedeschi FA et al (2018) The DEAD-box protein Dbp2p is linked to noncoding RNAs, the helicase Sen1p, and R-loops. RNA 24(12):1693–1705

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Lai Y-H et al (2019) Genome-wide discovery of DEAD-box RNA helicase targets reveals RNA structural remodeling in transcription termination. Genetics 212(1):153–174

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Gao J et al (2019) DEAD-box RNA helicases Dbp2, Ded1 and Mss116 bind to G-quadruplex nucleic acids and destabilize G-quadruplex RNA. ChemCommun 55(31):4467–4470

    CAS  Google Scholar 

  81. Beißel C et al (2019) Translation termination depends on the sequential ribosomal entry of eRF1 and eRF3. Nucleic Acids Res 47(9):4798–4813

    PubMed  PubMed Central  Google Scholar 

  82. Gross T et al (2007) The DEAD-box RNA helicase Dbp5 functions in translation termination. Science 315(5812):646–649

    CAS  PubMed  Google Scholar 

  83. Mikhailova T et al (2017) RNA helicase DDX19 stabilizes ribosomal elongation and termination complexes. Nucleic Acids Res 45(3):1307–1318

    CAS  PubMed  Google Scholar 

  84. Scarcelli JJ et al (2008) Synthetic genetic array analysis in Saccharomyces cerevisiae provides evidence for an interaction between RAT8/DBP5 and genes encoding P-body components. Genetics 179(4):1945–1955

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Mugler CF et al (2016) ATPase activity of the DEAD-box protein Dhh1 controls processing body formation. Elife 5:e18746

    PubMed  PubMed Central  Google Scholar 

  86. Tauber D et al (2020) Modulation of RNA condensation by the DEAD-box protein eIF4A. Cell 180:411–426

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Lin DH et al (2018) Structural and functional analysis of mRNA export regulation by the nuclear pore complex. Nat Commun 9(1):1–19

    Google Scholar 

  88. Diot C et al (2016) Influenza A virus polymerase recruits the RNA helicase DDX19 to promote the nuclear export of viral mRNAs. Sci Rep 6:33763

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Zhang K et al (2019) DDX19 inhibits type I interferon production by disrupting TBK1-IKKε-IRF3 interactions and promoting TBK1 and IKKε degradation. Cell Rep 26(5):1258-1272.e4

    CAS  PubMed  Google Scholar 

  90. Li J et al (2015) DDX19A senses viral RNA and mediates NLRP3-dependent inflammasome activation. J Immunol 195(12):5732–5749

    CAS  PubMed  Google Scholar 

  91. Bischoff FR et al (1994) RanGAP1 induces GTPase activity of nuclear Ras-related Ran. ProcNatlAcadSci 91(7):2587–2591

    CAS  Google Scholar 

  92. Bischoff FR, Ponstingl H (1991) Catalysis of guanine nucleotide exchange on Ran by the mitotic regulator RCC1. Nature 354(6348):80–82

    CAS  PubMed  Google Scholar 

  93. Joseph J (2006) Ran at a glance. J Cell Sci 119(17):3481–3484

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge all past and current members of the Montpetit laboratory for their support of this work. AANR was funded by the predoctoral Training Program in Molecular and Cellular Biology at UC Davis that is supported by an NIH T32 training grant (GM007377). AANR and BM were supported by the National Institute of General Medical Sciences of the National Institutes of Health under Award Number R01GM124120 (BM). The content is solely the responsibility of the authors and does not necessarily represent the views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ben Montpetit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arul Nambi Rajan, A., Montpetit, B. Emerging molecular functions and novel roles for the DEAD-box protein Dbp5/DDX19 in gene expression. Cell. Mol. Life Sci. 78, 2019–2030 (2021). https://doi.org/10.1007/s00018-020-03680-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03680-y

Keywords

Navigation